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1

Introduction and datamanipulation

1.1. Why ordination?

Whenwe investigate variationofplant or animal communities across a
rangeofdifferent environmental conditions,weusuallyfindnot only largedif-
ferences in species composition of the studied communities, but also a certain
consistency or predictability of this variation. For example, if we look at the
variationof grasslandvegetation in a landscape anddescribe theplant commu-
nity compositionusing vegetation samples, then the individual samples canbe
usually ordered along one, two or three imaginary axes. The change in the veg-
etation composition is often small as we move our focus from one sample to
those nearby on such a hypothetical axis.

This gradual change in the community composition can often be related to
differing, but partially overlapping demands of individual species for environ-
mental factors such as the average soil moisture, its fluctuations throughout
the season, the ability of species to compete with other ones for the available
nutrients and light, etc. If the axes alongwhichwe originally ordered the sam-
ples can be identifiedwith a particular environmental factor (such asmoisture
or richness of soil nutrients), we can call them a soilmoisture gradient, a nutri-
ent availability gradient, etc. Occasionally, such gradients can be identified in
a real landscape, e.g. as a spatial gradient along a slope from a riverbank, with
gradually decreasing soil moisture. But more often we can identify such axes
along which the plant or animal communities vary in a more or less smooth,
predictable way, yet we cannot find them in nature as a visible spatial gradient
and neither can we identify them uniquely with a particular measurable envi-
ronmental factor. In such cases,we speak aboutgradients of species compos-
ition change.

The variation in biotic communities can be summarized using one of a
wide range of statistical methods, but if we stress the continuity of change

1
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Figure 1-1. Summarizing grassland vegetation composition with ordination:
ordination diagram from correspondence analysis.

in community composition, the so-called ordination methods are the tools
of trade. They have been used by ecologists since the early 1950s, and dur-
ing their evolution these methods have radiated into a rich and sometimes
confusing mixture of various techniques. Their simplest use can be illus-
trated by the example introduced above. When we collect recordings (sam-
ples) representing the species composition of a selected quadrat in a vegeta-
tion stand, we can arrange the samples into a table where individual species
are represented by columns and individual samples by rows. When we ana-
lyse such data with an ordination method (using the approaches described
in this book), we can obtain a fairly representative summary of the grass-
land vegetation using an ordination diagram, such as the one displayed in
Figure 1-1.

The rules for reading such ordination diagrams will be discussed thor-
oughly later on (see Chapter 10), but even without their knowledge we can
read much from the diagram, using the idea of continuous change of compo-
sition along the gradients (suggested here by the diagram axes) and the idea
that proximity implies similarity. The individual samples are represented
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in Figure 1-1 by grey circles. We can expect that two samples that lie near to
each other will be much more similar in terms of list of occurring species and
even in the relative importance of individual species populations, compared to
samples far apart in the diagram.

The triangle symbols represent the individual plant species occurring in the
studied type of vegetation (not all species present in the data were included in
the diagram). In this example, our knowledge of the ecological properties of
the displayed species can aid us in an ecological interpretation of the gra-
dients represented by the diagram axes. The species preferring nutrient-rich
soils (such as Urtica dioica, Aegopodium podagraria, or Filipendula ulmaria) are lo-
catedat the right sideof thediagram,while the speciesoccurringmostly insoils
poor in available nutrients are on the left side (Viola palustris, Carex echinata, or
Nardus stricta). The horizontal axis can therefore be informally interpreted as a
gradient of nutrient availability, increasing from the left to the right side. Sim-
ilarly, the species with their points at the bottom of the diagram are from the
wetter stands (Galium palustre, Scirpus sylvaticus, or Ranunculus repens) than the
species in the upper part of the diagram (such as Achillea millefolium, Trisetum
flavescens, or Veronica chamaedrys). The second axis, therefore, represents a gradi-
ent of soil moisture.

As youhave probably already guessed, the proximity of species symbols (tri-
angles) with respect to a particular sample symbol (a circle) indicates that these
species are likely to occurmore often and/orwith a higher (relative) abundance
than the species with symbolsmore distant from the sample.

Our example study illustrates the most frequent use of ordination meth-
ods in community ecology. We can use such an analysis to summarize com-
munity patterns and compare the suggested gradients with our independent
knowledge of environmental conditions. But we can also test statistically the
predictive power of such knowledge; i.e. address the questions such as ‘Does
the community composition change with the soil moisture or are the identi-
fied patterns just amatter of chance?’ These analyses can be donewith the help
of constrained ordination methods and their use will be illustrated later in
this book.

However, we do not need to stopwith such exploratory or simple confirma-
tory analyses and this is the focusof the rest of thebook.The rich toolboxof var-
ious types of regression and analysis of variance, including analysis of repeated
measurements on permanent sites, analysis of spatially structured data, vari-
ous types of hierarchical analysis of variance (ANOVA), etc., allows ecologists to
address more complex, and often more realistic questions. Given the fact that
the populations of different species occupying the same environment often
share similar strategies in relation to the environmental factors, it would be
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very profitable if one could ask similar complex questions for the whole biotic
communities. In this book, we demonstrate that this can be done andwe show
the reader how to do it.

1.2. Terminology

The terminology for multivariate statistical methods is quite compli-
cated. There are at least two different sets of terminology. One, more general
and abstract, contains purely statistical terms applicable across thewhole field
of science. In this sectionwegive the terms from this set in italics andmostly in
parentheses. The other represents amixture of terms used in ecological statis-
tics with themost typical examples coming from the field of community ecol-
ogy. This is the set on which wewill focus, using the former just to refer to the
more general statistical theory. In thisway,we use the same terminology as the
CANOCO software documentation.

In all cases, we have a data set with the primary data. This data set con-
tains records on a collection of observations – samples (sampling units).∗ Each
sample comprises values for multiple species or, less often, the other kinds
of descriptors. The primary data can be represented by a rectangular matrix,
where the rows typically represent individual samples and the columns repre-
sent individual variables (species, chemical or physical properties of the water
or soil, etc.).†

Very often our primary data set (containing the response variables) is accompa-
niedby anotherdata set containing the explanatory variables. If ourprimarydata
represent communitycomposition, thentheexplanatorydata set typically con-
tainsmeasurements of the soil orwater properties (for the terrestrial or aquatic
ecosystems, respectively), a semi-quantitative scoring of human impact, etc.
Whenweuse the explanatoryvariables inamodel topredict theprimarydata (like
community composition), we might divide them into two different groups.
The first group is called, somewhat inappropriately, the environmental
variables and refers to the variables that are of prime interest (in the role of
predictors) in our particular analysis. The other group represents the covari-
ables (often referred to as covariates in other statistical approaches), which are

∗ There is an inconsistency in the terminology: in classical statistical terminology, samplemeans a
collection of sampling units, usually selected at random from the population. In community ecology,
sample is usually used for a description of a sampling unit. This usage will be followed in this text.
The general statistical packages use the term casewith the samemeaning.

† Note that this arrangement is transposed in comparisonwith the tables used, for example, in
traditional vegetation analyses. The classical vegetation tables have individual taxa represented by
rows and the columns represent the individual samples or community types.
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also explanatory variables with an acknowledged (or hypothesized) influence
on the response variables. We want to account for (subtract, partial-out) such an
influence before focusing on the influence of the variables of prime interest
(i.e. the effect of environmental variables).

As an example, let us imagine a situation where we study the effects of soil
properties and type of management (hay cutting or pasturing) on the species
composition of meadows in a particular area. In one analysis, we might be
interested in the effect of soil properties, paying no attention to the manage-
ment regime. In this analysis, we use the grassland composition as the species
data (i.e. primary data set, with individual plant species as individual response
variables) and the measured soil properties as the environmental variables
(explanatory variables). Based on the results, we can make conclusions about
the preferences of individual plant species’ populations for particular environ-
mental gradients, which are described (more or less appropriately) by the
measured soil properties. Similarly, we can ask how the management type
influencesplant composition. In this case, thevariablesdescribing themanage-
ment regime act as environmental variables. Naturally, we might expect that
the management also influences the soil properties and this is probably one
of the ways in which management acts upon the community composition.
Based on such expectation,wemay ask about the influence of themanagement
regime beyond that mediated through the changes of soil properties. To
address such a question, we use the variables describing the management
regime as the environmental variables and the measured soil properties as
the covariables.∗

One of the keys to understanding the terminology used by the CANOCO
program is to realize that the data referred to by CANOCO as the species data
might, in fact, be any kind of data with variables whose values we want to
predict. Forexample, ifwewould like topredict thequantitiesofvariousmetal
ions in river water based on the landscape composition in the catchment area,
then the individual ions would represent the individual ‘species’ in CANOCO
terminology. If the species data really represent the species composition of a
community, we describe the composition using various abundance measures,
including counts, frequency estimates, and biomass estimates. Alternatively,
we might have information only on the presence or absence of species in ind-
ividual samples. The quantitative and presence-absence variables may also
occur as explanatory variables. These various kinds of data values are treated in
more detail later in this chapter.

∗ This particular example is discussed in the Canoco forWindowsmanual (Ter Braak & Šmilauer, 2002),
section 8.3.1.
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Table 1-1.The types of the statistical models

Predictor(s)
Response
variable(s) . . . Absent Present

. . . is one • distribution summary • regression models sensu lato

. . . are many • indirect gradient analysis • direct gradient analysis
(PCA, DCA, NMDS)

• cluster analysis • discriminant analysis (CVA)

CVA, canonical variate analysis; DCA, detrended correspondence analysis; NMDS,
non-metric multidimensional scaling; PCA, principal components analysis.

1.3. Types of analyses

If we try to describe the behaviour of one or more response variables,
the appropriate statistical modelling methodology depends on whether we
study each of the response variables separately (or many variables at the same
time), and whether we have any explanatory variables (predictors) available
whenwe build themodel.

Table1-1 summarizes themost important statisticalmethodologies used in
these different situations.

If we look at a single response variable and there are no predictors avail-
able, thenwe can only summarize the distributional properties of that variable
(e.g. by a histogram, median, standard deviation, inter-quartile range, etc.).
In the case of multivariate data, we might use either the ordination approach
represented by the methods of indirect gradient analysis (most prominent
are the principal components analysis – PCA, correspondence analysis – CA,
detrended correspondence analysis –DCA, and non-metric multidimensional
scaling –NMDS) or we can try to (hierarchically) divide our set of samples into
compact distinct groups (methods of cluster analysis, see Chapter 7).

Ifwehave one ormorepredictors available andwedescribe values of a single
variable, thenweuse regressionmodels in thebroadsense, i.e. includingboth
traditional regression methods and methods of analysis of variance (ANOVA)
and analysis of covariance (ANOCOV). This group of methods is unified under
the so-called general linear model and was recently extended and enhanced
by the methodology of generalized linear models (GLM) and generalized
additive models (GAM). Further information on these models is provided in
Chapter 8.

If we have predictors for a set of response variables, we can summarize
relations between multiple response variables (typically biological species)
and one or several predictors using the methods of direct gradient analysis



1.5. Explanatory variables 7

(mostprominent are redundancy analysis (RDA) and canonical correspondence
analysis (CCA), but there are several othermethods in this category).

1.4. Response variables

The data table with response variables∗ is always part of multivariate
analyses. If explanatory variables (see Section 1.5), which may explain the val-
ues of the response variables, were not measured, the statistical methods can
try to construct hypothetical explanatory variables (groups or gradients).

The response variables (often called species data, based on the typical con-
text of biological community data) can often bemeasured in a precise (quanti-
tative) way. Examples are the dry weight of the above-ground biomass of plant
species, counts of specimens of individual insect species falling into soil traps,
or thepercentage cover of individual vegetation types in aparticular landscape.
We can compare different values not only by using the ‘greater-than’, ‘less-
than’ or ‘equal to’ expressions, but also using their ratios (‘this value is two
times higher than the other one’).

In other cases,we estimate the values for theprimarydata on a simple, semi-
quantitative scale. Good examples are the various semi-quantitative scales
used in recording the composition of plant communities (e.g. original Braun-
Blanquet scale or its variousmodifications). The simplest possible formof data
are binary (also called presence-absence or 0/1) data. These data essentially cor-
respond to the list of species present in each of the samples.

If our response variables represent the properties of the chemical or phys-
ical environment (e.g. quantified concentrations of ions or more complicated
compounds in the water, soil acidity, water temperature, etc.), we usually get
quantitative values for them, but with an additional constraint: these charac-
teristics do not share the same units of measurement. This fact precludes the
use of some of the ordination methods† and dictates the way the variables are
standardized if used in the other ordinations (see Section 4.4).

1.5. Explanatory variables

The explanatory variables (also called predictors or independent vari-
ables) represent theknowledge thatwehave about our samples and thatwe can
use to predict the values of the response variables (e.g. abundance of various

∗ also called dependent variables.
† namely correspondence analysis (CA), detrended correspondence analysis (DCA), or canonical
correspondence analysis (CCA).
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species) in a particular situation. For example,wemight try topredict the com-
position of a plant community based on the soil properties and the type of land
management.Note thatusually theprimary task isnot theprediction itself.We
try touse ‘prediction rules’ (derived,mostoften, fromtheordinationdiagrams)
to learnmore about the studied organisms or systems.

Predictors can be quantitative variables (concentration of nitrate ions in
soil), semi-quantitative estimates (degree of human influence estimated on a
0–3 scale) or factors (nominal or categorical – also categorial – variables). The
simplest predictor form is a binary variable, where the presence or absence of
a certain feature or event (e.g. vegetation was mown, the sample is located in
study area X, etc.) is indicated, respectively, by a 1 or 0 value.

The factors are the natural way of expressing the classification of our samp-
les or subjects: For example, classes of management type for meadows, type
of stream for a study of pollution impact on rivers, or an indicator of the
presence/absence of a settlement near the sample in question.When using fac-
tors in the CANOCO program, we must re-code them into so-called dummy
variables, sometimes also called indicator variables (and, also, binary vari-
ables). There is one separate dummy variable for each different value (level) of
the factor. If a sample (observation) has a particular value of the factor, then
the corresponding dummy variable has the value 1.0 for this sample, and the
other dummy variables have a value of 0.0 for the same sample. For example,
we might record for each of our samples of grassland vegetation whether it is
a pasture, meadow, or abandoned grassland. We need three dummy variables
for recording such a factor and their respective values for ameadoware0.0,1.0,
and 0.0.∗

Additionally, this explicit decomposition of factors into dummy variables
allows us to create so-called fuzzy coding. Using our previous example, we
might include in our data set a site that had been used as a hay-cut meadow
until the previous year, butwasused as pasture in the current year.We can reas-
onably expect that both types of management influenced the present compos-
ition of the plant community. Therefore, we would give values larger than 0.0
and less than1.0 for both thefirst and seconddummyvariables. The important
restriction here is that the valuesmust sum to 1.0 (similar to the dummy varia-
bles coding normal factors). Unless we can quantify the relative importance of
the two management types acting on this site, our best guess is to use values
0.5, 0.5, and 0.0.

∗ In fact, we need only two (generally K −1) dummy variables to code uniquely a factor with three
(generally K ) levels. But the one redundant dummy variable is usually kept in the data, which is
advantageous when visualizing the results in ordination diagrams.
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If we build a model where we try to predict values of the response variables
(‘species data’) using the explanatory variables (‘environmental data’),we often
encounter a situationwhere someof the explanatoryvariables affect the species
data, yet these variables are treated differently: we do not want to interpret
their effect, but only want to take this effect into account when judging
the effects of the other variables.We call these variables covariables (or, altern-
atively, covariates). A typical example is an experimental design where sam-
plesaregrouped into logicalorphysicalblocks.Thevaluesof responsevariables
(e.g. species composition) for a group of samples might be similar due to their
spatial proximity, so we need to model this influence and account for it in our
data. The differences in response variables that are due to the membership
of samples in different blocks must be removed (i.e. ‘partialled-out’) from the
model.

But, in fact, almost any explanatory variable can take the role of a covariable.
For example, in a project where the effect of management type on butterfly
community composition is studied, we might have the localities at different
altitudes. The altitude might have an important influence on the butterfly
communities, but in this situation we are primarily interested in the manage-
ment effects. If we remove the effect of the altitude, we might get a clearer
picture of the influence that the management regime has on the butterfly
populations.

1.6. Handling missing values in data

Whatever precautions we take, we are often not able to collect all the
data values we need: a soil sample sent to a regional lab gets lost, we forget to
fill in a particular slot in our data collection sheet, etc.

Mostoften,wecannotgobackandfill in theempty slots, usuallybecause the
subjects we study change in time. We can attempt to leave those slots empty,
but this is often not the best decision. For example, when recording sparse
community data (we might have a pool of, say, 300 species, but the average
number of species per sample is much lower), we interpret the empty cells in a
spreadsheet as absences, i.e. zero values. But the absence of a species is very dif-
ferent from the situationwherewe simply forgot to look for this species! Some
statisticalprogramsprovideanotionofmissingvalues (itmightbe represented
as a word ‘NA’, for example), but this is only a notational convenience. The
actual statisticalmethodmust deal further with the fact that there aremissing
values in the data. Here are few options wemight consider:

1. We can remove the samples in which the missing values occur. This works

well if the missing values are concentrated in a few samples. If we have,
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for example, a data set with 30 variables and 500 samples and there are

20 missing values from only three samples, it might be wise to remove

these three samples from our data before the analysis. This strategy is

often used by general statistical packages and it is usually called

‘case-wise deletion’.

2. On the other hand, if the missing values are concentrated in a few

variables that are not deemed critical, we might remove the variables

from our data set. Such a situation often occurs when we are dealing with

data representing chemical analyses. If ‘every thinkable’ cation

concentration was measured, there is usually a strong correlation among

them. For example, if we know the values of cadmium concentration in

air deposits, we can usually predict the concentration of mercury with

reasonable precision (although this depends on the type of pollution

source). Strong correlation between these two characteristics implies that

we can make good predictions with only one of these variables. So, if we

have a lot of missing values in cadmium concentrations, it might be best

to drop this variable from our data.

3. The two methods of handling missing values described above might

seem rather crude, because we lose so much of our data that we often

collected at considerable expense. Indeed, there are various imputation

methods. The simplest one is to take the average value of the variable

(calculated, of course, only from the samples where the value is not

missing) and replace the missing values with it. Another, more

sophisticated one, is to build a (multiple) regression model, using the

samples with no missing values, to predict the missing value of a variable

for samples where the values of the other variables (predictors in the

regression model) are not missing. This way, we might fill in all the holes

in our data table, without deleting any samples or variables. Yet, we are

deceiving ourselves – we only duplicate the information we have. The

degrees of freedom we lost initially cannot be recovered.

If we then use such supplemented data in a statistical test, this test makes
an erroneous assumption about the number of degrees of freedom (number
of independent observations in our data) that support the conclusion made.
Therefore, the significance level estimates are not quite correct (they are ‘over-
optimistic’). We can alleviate this problem partially by decreasing the statis-
tical weight for the samples where missing values were estimated using one
or another method. The calculation can be quite simple: in a data set with
20 variables, a sample with missing values replaced for five variables gets
a weight 0.75 (=1.00 − 5/20). Nevertheless, this solution is not perfect. If
we work only with a subset of the variables (for example, during a stepwise
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selection of explanatory variables), the samples with any variable being
imputed carry the penalty even if the imputed variables are not used.

Themethods of handlingmissing data values are treated in detail in a book
by Little & Rubin (1987).

1.7. Importing data from spreadsheets – WCanoImp program

The preparation of input data for multivariate analyses has always
been the biggest obstacle to their effective use. In the older versions of the
CANOCO program, one had to understand the overly complicated and un-
forgiving format of the data files, which was based on the requirements of
the FORTRAN programming language used to create the CANOCO program.
Version 4 of CANOCO alleviates this problem by two alternative means. First,
there is now a simple format with minimum requirements for the file con-
tents (the free format). Second, and probably more important, is the new, easy
method of transforming data stored in spreadsheets into CANOCO format
files. In this section, we will demonstrate how to use the WCanoImp program
for this purpose.

Let us start with the data in your spreadsheet program. While the majority
of users will work with Microsoft Excel, the described procedure is applicable
to any other spreadsheet program running under Microsoft Windows. If the
data are stored in a relational database (Oracle, FoxBASE, Access, etc.) you can
use the facilities of your spreadsheet program to first import the data into it.
In the spreadsheet, youmust arrange your data into a rectangular structure, as
laid out by the spreadsheet grid. In the default layout, the individual samples
correspondto the rowswhile the individual spreadsheet columns represent the
variables. In addition, you have a simple heading for both rows and columns:
thefirst row (except theemptyupper left corner cell) contains thenamesofvari-
ables,while thefirst column contains thenames of the individual samples.Use
of heading(s) is optional, becauseWCanoImp is able to generate simple names
there.When using the heading row and/or column, youmust observe the lim-
itations imposed by the CANOCOprogram. The names cannot havemore than
eight characters and the character set is somewhat limited: the safest strategy
is to use only the basic English letters, digits, dot, hyphen and space.Neverthe-
less, WCanoImp replaces any prohibited characters by a dot and also shortens
any names longer than the eight characters. Uniqueness (and interpretability)
of the names can be lost in such a case, so it is better to take this limitation into
account when initially creating the names.

The remaining cells of the spreadsheet must only be numbers (whole or
decimal) or they must be empty. No coding using other kinds of characters is
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Figure 1-2. The main window of the WCanoImp program.

allowed. Qualitative variables (‘factors’) must be coded for the CANOCO prog-
ram using a set of ‘dummy variables’ – see Section 1.5 formore details.

When the datamatrix is ready in the spreadsheet program, youmust select
the rectangular region (e.g. using the mouse pointer) and copy its contents to
the Windows Clipboard. WCanoImp takes the data from the Clipboard, de-
termines their properties (range of values, number of decimal digits, etc.) and
allows you to create a new data file containing these values, and conforming to
one of two possible CANOCO data file formats. Hopefully it is clear that the
requirements concerning the format of the data in a spreadsheet program
apply only to the rectangle being copied to the Clipboard. Outside of it, you
can place whatever values, graphs or objects you like.

The WCanoImp program is accessible from the Canoco for Windows prog-
rammenu (Start > Programs > [Canoco forWindows folder]). This import utility
has an easy user interface represented chiefly by one dialog box, displayed in
Figure 1-2.

The upper part of the dialog box contains a short version of the instructions
provided here. Once data are on the Clipboard, check the WCanoImp options
that are appropriate for your situation. The first option (Each column is a Sample)
applies only if you have your matrix transposed with respect to the form des-
cribed above. This might be useful if you do not have many samples (because
Microsoft Excel, for example, limits the number of columns to 256) but a high
number of variables. If you do not have names of samples in the first column,
you must check the second checkbox (i.e. ask to Generate labels for: . . . Samples),
similarly check the third checkbox if the first row in the selected spreadsheet
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rectangle corresponds to the values in the first sample, not to the names of the
variables. The last checkbox (Save inCondensedFormat) governs the actual format
used when creating the data file. The default format (used if this option is not
checked) is the so-called full format; the alternative format is the condensed
format. Unless you are worried about using too much hard disc space, it does
not matter what you select here (the results of the statistical methods will be
identical, whatever format is chosen).

After you have made sure the selected options are correct, you can proceed
by clicking the Savebutton. Youmust first specify thenameof thefile to be gen-
erated and the place (disc letter and folder) where it will be stored.WCanoImp
then requests a simple description (one line of ASCII text) for the data set being
generated. This one line then appears in the analysis output and reminds you
of the kind of data being used. A default text is suggested in case you do not
care about this feature. WCanoImp then writes the file and informs you about
its successful creation with another dialog box.

1.8. Transformation of species data

As will be shown in Chapter 3, ordination methods find the axes
representing regression predictors that are optimal for predicting the values
of the response variables, i.e. the values in the species data. Therefore, the
problem of selecting a transformation for the response variables is rather sim-
ilar to the problem one would have to solve if using any of the species as a
single response variable in the (multiple) regression method. The one addi-
tional restriction is the need to specify an identical data transformation for all
the response variables (‘species’), because such variables are oftenmeasured on
the same scale. In the unimodal (weighted averaging) ordinationmethods (see
Section 3.2), the data values cannot be negative and this imposes a further res-
triction on the outcome of any potential transformation.

This restriction is particularly important in the case of the log transformat-
ion. The logarithm of 1.0 is zero and logarithms of values between 0 and 1 are
negative. Therefore, CANOCOprovides a flexible log-transformation formula:

y ′ = log(A · y + C )

You should specify the values of A andC so that after the transformation is app-
lied to your data values (y ), the result (y ′) is always greater or equal to zero. The
default values of both A and C are 1.0, which neatly map the zero values again
to zero, and other values are positive. Nevertheless, if your original values are
small (say, in the range0.0 to0.1), the shift causedby adding the relatively large
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value of 1.0 dominates the resulting structure of the data matrix. You can adj-
ust the transformation in this case by increasing the value of A to 10.0. But the
default log transformation (i.e. log(y + 1)) workswell with the percentage data
on the 0 to 100 scale, or with the ordinary counts of objects.

The question of when to apply a log transformation and when to use the
original scale is not an easy one to answer and there are almost asmany answers
as there are statisticians. We advise you not to think so much about distribu-
tional properties, at least not in the sense of comparing frequency histograms
of the variables with the ‘ideal’ Gaussian (Normal) distribution. Rather try to
work out whether to stay on the original scale or to log-transform by using the
semantics of the hypothesis you are trying to address.

As stated above, ordination methods can be viewed as an extension of mul-
tiple regression methods, so this approach will be explained in the simpler
regression context. You might try to predict the abundance of a particular
species in samples based on the values of one ormore predictors (environmen-
tal variables, or ordination axes in the context of ordination methods). One
can formulate the question addressed by such a regression model (assuming
just a single predictor variable for simplicity) as ‘Howdoes the average value of
species Y change with a change in the environmental variable X by one unit?’
If neither the response variable nor the predictors are log-transformed, your
answer can take the form ‘The value of species Y increases by B if the value of
environmental variable X increases by one measurement unit’. Of course, B is
thentheregressioncoefficientof the linearmodelequationY =B0 + B · X + E .
But in other cases, youmight prefer to see the answer in a different form, ‘If the
valueof environmental variable X increasesbyoneunit, the average abundance
of the species increases by 10%’. Alternatively, you can say ‘The abundance
increases 1.10 times’. Here you are thinking on amultiplicative scale, which is
not the scale assumed by the linear regression model. In such a situation, you
should log-transform the response variable.

Similarly, if the effect of a predictor (environmental) variable changes in a
multiplicative way, the predictor variable should be log-transformed.

Plant community composition data are often collected on a semi-
quantitative estimation scale and the Braun–Blanquet scale with seven
levels (r ,+, 1, 2, 3, 4, 5) is a typical example. Such a scale is often quantified in
the spreadsheets using corresponding ordinal levels (from 1 to 7 in this case).
Note that this coding already implies a log-like transformation because the
actual cover/abundance differences between the successive levels are generally
increasing. An alternative approach to using such estimates in data analysis
is to replace them by the assumed centres of the corresponding range of per-
centage cover. But doing so, you find a problemwith the r and + levels because
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these are based more on the abundance (number of individuals) of the species
than on their estimated cover. Nevertheless, using very rough replacements
such as 0.1 for r and 0.5 for + rarely harms the analysis (compared to the
alternative solutions).

Another useful transformation available in CANOCO is the square-root
transformation. This might be the best transformation to apply to count data
(number of specimens of individual species collected in a soil trap, number of
individuals of various ant species passing over a marked ‘count line’, etc.), but
the log-transformation also handles well such data.

The console version of CANOCO 4.x also provides the rather general ‘linear
piecewise transformation’ which allows you to approximate themore compli-
cated transformation functions using a poly-line with defined coordinates of
the ‘knots’. This general transformation is not present in theWindows version
of CANOCO, however.

Additionally, if you need any kind of transformation that is not provided
by the CANOCO software, you might do it in your spreadsheet software and
export the transformed data into CANOCO format. This is particularly use-
ful in cases where your ‘species data’ do not describe community composition
but something like chemical and physical soil properties. In such a case, the
variables have different units of measurement and different transformations
might be appropriate for different variables.

1.9. Transformation of explanatory variables

Because the explanatory variables (‘environmental variables’ and
‘covariables’ inCANOCOterminology) areassumednot tohaveauniformscale,
you need to select an appropriate transformation (including the popular ‘no
transformation’ choice) individually for each such variable. CANOCOdoes not
provide this feature; therefore, any transformations on the explanatory vari-
ables must be done before the data are exported into a CANOCO-compatible
data file.

But you should be aware that after CANOCO reads in the environmental
variables and/or covariables, it centres and standardizes them all, to bring
their means to zero and their variances to one (this procedure is often called
standardization to unit variance).




