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Improving data analysis in herpetology: using Akaike’s Information
Criterion (AIC) to assess the strength of biological hypotheses

Marc J. Mazerolle!

Abstract. In ecology, researchers frequently use observational studies to explain a given pattern, such as the number
of individuals in a habitat patch, with a large number of explanatory (i.e., independent) variables. To elucidate such
relationships, ecologists have long relied on hypothesis testing to include or exclude variables in regression models, although
the conclusions often depend on the approach used (e.g., forward, backward, stepwise selection). Though better tools have
surfaced in the mid 1970’s, they are still underutilized in certain fields, particularly in herpetology. This is the case of the
Akaike information criterion (AIC) which is remarkably superior in model selection (i.e., variable selection) than hypothesis-
based approaches. It is simple to compute and easy to understand, but more importantly, for a given data set, it provides a
measure of the strength of evidence for each model that represents a plausible biological hypothesis relative to the entire
set of models considered. Using this approach, one can then compute a weighted average of the estimate and standard error
for any given variable of interest across all the models considered. This procedure, termed model-averaging or multimodel
inference, yields precise and robust estimates. In this paper, I illustrate the use of the AIC in model selection and inference, as
well as the interpretation of results analysed in this framework with two real herpetological data sets. The AIC and measures
derived from it is should be routinely adopted by herpetologists.

Keywords: data analysis, estimation, hypothesis testing, model averaging, regression, significance, stepwise, variable
selection.

Out with the old? such as tests of null hypotheses are well-suited
for manipulative experiments, their widespread
use and abuse to tackle issues such as parameter
estimation and model selection only reflects the

slow migration of superior techniques from the

In our attempt to explain reality through experi-
ments or observational studies, we must choose
how best to answer particular questions. Though

elaborating a sound design is paramount, the
analysis phase of an investigation is an impor-
tant, and often complex issue. Sometimes, we
may strive to estimate the effect (magnitude) of
a given variable on a response variable. In other
instances, we wish to assess whether the ef-
fect is sufficiently important to include the vari-
able in a model to make predictions, an issue
of model selection. The latter often happens in
observational studies, where a number of vari-
ables are believed to explain a given ecological
process or pattern. Whereas classical techniques
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distant world of statistics into ecological disci-
plines.

Hypothesis testing (null hypothesis testing)
indirectly addresses issues of estimation and
model selection by chasing statistically signif-
icant effects (i.e., the effect is or is not sig-
nificant), and provides little information on the
size of the effect (Yoccoz, 1991; Cherry, 1998;
Goodman, 1999). Hypothesis testing has gen-
erated schisms in some fields (Abelson, 1997,
Shrout, 1997; Batanero, 2000), with very heated
exchanges between devotees and “unbeliev-
ers” of this approach (in favor: Harris, 1997;
Chow, 1998; Robinson and Wainer, 2002; Mo-
gie, 2004; against: Hunter, 1997; Cherry, 1998;
Goodman, 1999; Guthery et al., 2001). Regard-
less, hypothesis testing does not perform par-
ticularly well in model selection (e.g., variables
selected by forward, backward, or stepwise ap-
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proaches), and alternatives do exist (Anderson
et al., 2000, 2001a; Guthery et al., 2001; John-
son, 1999, 2002). Alternative approaches in-
clude Bayesian methods and model selection
based on information theory (Ellison, 1996;
Wade, 2000; Burnham and Anderson, 2002,
2004).

One such approach, developed in the early
1970’s, rests on Akaike’s information criterion
(AIC) and its associated measures. This frame-
work is also known as the information-theoretic
approach, as it has arisen from information the-
ory, a field encompassing a number of meth-
ods and theories pivotal to many of the sciences.
Because information theory per se goes beyond
the scope of the present paper, the reader should
consult Kullback and Leibler (1951), Cover and
Thomas (1991), and Burnham and Anderson
(2002: 49) for further discussions on the is-
sue. In ecology, the AIC and its related mea-
sures were first applied almost exclusively in the
context of model selection in capture-recapture
analyses (Lebreton et al., 1992; Anderson et al.,
1994), but have gained popularity since the last
decade in more general situations (Johnson and
Omland, 2004).

The AIC is increasingly prevalent in pub-
lished papers on various taxa in the leading eco-
logical journals such as Ecology, Ecological Ap-
plications, Oikos, Journal of Wildlife Manage-
ment, and Journal of Applied Ecology. How-
ever, by looking deeper into the bulk of prac-
ticioners and the taxa-oriented journals, a dif-
ferent picture arises. Indeed, some fields such
as herpetology, still seem reticent to use these
techniques. This becomes evident when com-
paring the proportion of papers published in
the leading journals of ornithology, herpetology,
and ichthyology. Indeed, based on the first two
issues of 2004, 10.8% of the papers published
in ornithology used this approach, whereas only
3.5% and 0.8% of papers dealt with this method
in the ichthyology and herpetology journals, re-
spectively (fig. 1). Though this review is super-
ficial and does not discriminate between types
of studies (mark-recapture or other designs),
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Figure 1. Mean proportion (£1 SD) of papers dealing with
the information-theoretic approach and that were published
in the first two 2004 issues of the leading herpetological
(Amphibia-Reptilia, Copeia, Herpetologica, Herpetological
Monographs, Journal of Herpetology; n = 150 papers
searched), ichthyological (Canadian Journal of Fisheries
and Aquatic Sciences, Ecology of Freshwater Fish, Fish-
eries Research, Journal of Fish Biology, Transactions of the
American Fisheries Society; n = 165 papers searched), and
ornithological journals (The Auk, Bird Study, The Condor,
Ibis, Journal of Avian Biology; n = 183 papers searched).

it indicates nonetheless that this approach is
not taking off in herpetology. Some herpeto-
logical papers have used the approach in gen-
eral journals (e.g., Van Buskirk and Arioli,
2002; Weyrauch and Grubb, 2004; Bailey et al.,
2004), but most herpetologists seem unaware of
these methods. In this paper, I illustrate with
simple examples, the use and interpretation of
information-theoretic approaches with real her-
petological data sets. Whereas Schmidt and An-
holt (1999) and Schmidt et al. (2002) briefly
mentioned these approaches in the context of
capture-recapture data, I provide a comprehen-
sive and general illustration of the AIC and re-
lated measures for all types of data analyses.

First things first

To be most efficient in our investigations, we
should keep three principles in mind when mak-
ing inferences (Burnham and Anderson, 2001):
1) simplicity and parsimony, 2) several working
hypotheses, and 3) strength of evidence. Sim-
plicity and parsimony, is a concept that sug-
gests that the simplest explanation is probably
the most likely. Parsimony is a component of
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model building, where we must compromise
between model bias and variance. Here, bias
corresponds to the difference between the esti-
mated value and true unknown value of a para-
meter, whereas variance reflects the precision of
these estimates; a common measure of precision
is the standard error (SE) of the estimate. Thus,
a model with too many variables will have low
precision whereas a model with too few vari-
ables will be biased (Lehmann, 1990; Burnham
and Anderson, 2002: 31).

The formulation of several working hypothe-
ses consists in evaluating the plausibility of a
series of research hypotheses (or models) with
an experiment or study, then according to the
results of the analyses, dropping some of the
least likely hypotheses (or models) and formu-
lating new ones to test with new data (Cham-
berlin, 1965). At any given time, several mod-
els are considered. Following the analyses, we
then require a measure of the strength of evi-
dence in favour of each model we considered.
Information-theoretic approaches adhere in part
to all three principles, which make them quite
attractive.

Minimizing the loss of information

Before constructing a model (e.g., a linear
regression model or any generalized linear
model), we must accept that no single model
yields the whole truth or complete information
about the phemonena under study. Indeed, mod-
els only approximate reality. The question then
is to find which model would best approximate
reality given the data we have recorded. In other
words, we are trying to minimize the loss of
information. Kullback and Leibler (1951) ad-
dressed such issues and developed a measure,
the Kullback-Leibler information, to represent
the information lost when approximating real-
ity (i.e., a good model minimizes the loss of in-
formation). A few decades later, Akaike (1973)
established a relationship between the maxi-
mum likelihood, which is one of the most wide-
spread estimation methods used in statistical
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analyses, and the Kullback-Leibler information.
In essence, he developed an information crite-
rion to estimate the Kullback-Leibler informa-
tion. Very useful in model selection, this crite-
rion was later termed Akaike’s information cri-
terion (AIC), defined as

AIC = —2(log-likelihood) + 2K

where K is the number of estimated parame-
ters included in the model (i.e., the number of
variables+ 1, to include the intercept). Note that
when the variance is estimated, such as in mod-
els using the normal distribution, it must be in-
cluded in the count of parameters, K (Ander-
son and Burnham, 2002: 12). The log-likelihood
of the model given the data, is readily avail-
able in statistical output, and reflects the overall
fit of the model (smaller values indicate worse
fit). The AIC penalizes for the addition of pa-
rameters, and thus selects a model that fits well
but has a minimum number of parameters (i.e.,
the principle of simplicity and parsimony). The
AIC can also be easily calculated from the out-
put of conventional least-squares regression for
normally-distributed errors (see Burnham and
Anderson, 2002: 63).

Sugiura (1978) later developed the second-
order Akaike Information Criterion (AIC,.) for
small sample sizes

AIC.=—2(log -likelihood) + 2K
2K(K +1)
n—K-—1)

where n is the effective sample size. As sam-
ple size increases, the last term of the AIC. ap-
proaches zero, and the AIC,. tends to yield the
same conclusions as the AIC (Burnham and An-
derson, 2002: 66). Thus, it is strongly recom-
mended to routinely use the AIC.. To simplify
the text in this paper, I will use the term AIC as
a generic term to denote all information criteria
derived from it (i.e., AIC, AIC., QAIC, QAIC,,
see below).
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Model selection

The value of the AIC for a given model is a
measure of the loss of information which results
from the use of the model to explain a particular
variable or pattern. Though interesting, it is of
little use on its own. An AIC is most useful
when compared to the AIC of other models
for a given data set: the model with the lowest
AIC will be the “best” model among all models
specified for the data set. It remains that if only
poor models are considered, the AIC will select
the best of the poor models. This highlights the
importance of spending time to determine the
set of candidate models.

The importance of a priori model
specification

Before undertaking the analyses, one must de-
termine the set of candidate models to consider.
Each candidate model should represent a bio-
logical hypothesis. Model specification is the
hardest part of the AIC framework, as it re-
quires a lot of thought, and very few investiga-
tors have addressed this issue (but see Lehmann,
1990; Chatfield, 1991, 1995). Pertinent models
may be suggested by previous investigations in
similar conditions (e.g., habitat type or organ-
ism), as well as by judgement and knowledge
of the system under study. One should be able
to defend having included or excluded a given
model for consideration. The reader is directed
to Franklin et al. (2000) for a detailed account
of model specification and justification. It is im-
portant to grasp that formulating models a pos-
teriori, such as when following an initial round
of analyses, is unsuitable. Indeed, such practices
termed “data mining” or “data dredging”, can
lead to spurious results (Freedman, 1983; Chat-
field, 1995; Anderson et al., 2001b), and if any
do occur, they must be clearly outlined in the
paper (Anderson et al., 2001b).

After having specified the set of plausible
models to explain the data and before conduct-
ing the analyses (e.g., multiple linear regres-
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sion), one should assess the fit of the global
model, defined as the most complex model of
the set. In other words, for a given data set,
the global model is the one including all the
variables of interest, whereas simpler models
only contain a subset of these variables (see “An
example” below). We generally assume that if
the global model fits, simpler models also fit
because they originate from the global model
(Burnham and Anderson, 2002: 305; Cooch
and White, 2001). Many model diagnostics are
available such as residuals plotted against pre-
dicted values or goodness of fit statistics, and
the suitability of each depends on the type of
analysis (see Hosmer and Lemeshow, 1989;
McCullagh and Nelder, 1989; Williams et al.,
2002).

Once the appropriate transformations have
been conducted (if warranted) and the global
model fits the data, one can run each of the mod-
els and compute the AIC (or AIC.). The mod-
els can then be ranked from best to worse (i.e.,
low to high AIC values). One should ensure that
the same data set is used for each model, i.e.,
the same observations must be used for each
analysis. Missing values for only certain vari-
ables in the data set can also lead to variations
in the number of observations. Furthermore, the
same response variable (y) must be used for all
models (i.e., it must be identical across mod-
els, consistently with or without transforma-
tion). Nonetheless, one may specify different
link functions or distributions to compare dif-
ferent types of models (e.g., normal, Poisson,
logistic; see McCullagh and Nelder, 1989).

Comparing models

Two measures associated with the AIC can be
used to compare models: the delta AIC and
Akaike weights. These are easy to compute,
as calculations remain the same regardless of
whether the AIC or AIC, is used, and are easy
to interpret. The simplest, the delta AIC (A;),
is a measure of each model relative to the best
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model, and is calculated as
Delta AIC; = A; = AIC; — min AIC

where AIC; is the AIC value for model i, and
min AIC is the AIC value of the “best” model.
As arule of thumb, a A; < 2 suggests substan-
tial evidence for the model, values between 3
and 7 indicate that the model has considerably
less support, whereas a A; > 10 indicates that
the model is very unlikely (Burnham and An-
derson, 2002: 70).

Akaike weights (w; ) provide another measure
of the strength of evidence for each model, and
represent the ratio of the delta AIC (A;) of
a given model relative to the whole set of R
candidate models:

exp(—A;/2)
YR exp(=A,/2)

Essentially, we are simply changing the scale of
the A;’s to compare them on a scale of 1 (i.e., so
that the sum of the w; equals 1). The interpreta-
tion of Akaike weights (w;) is straightforward:
they indicate the probability that the model
is the best among the whole set of candidate
models. They are also equivalent to Bayesian
posterior probabilities (Burnham and Anderson,
2002: 302; Burnham and Anderson, 2004). For
instance, an Akaike weight of 0.75 for a model,
indicates that given the data, it has a 75% chance
of being the best one among those considered in
the set of candidate models. In addition, one can
compare the Akaike weights of the “best” model
and competing models to determine to what ex-
tent it is better than another. These are termed

evidence ratios and are calculated as

. . w;

Evidence ratio = —

w;
where model j, the “best” model, is compared
against model i. For example, an evidence ratio

of
U)j 0.55
— == = 1375
w; 0.40

would indicate that model j is only 1.38 more
likely than model i to be the best, given the set
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of R candidate models and the data. This sug-
gests that the rank of model j might change if
we were to take a series of independent samples
of identical size (Burnham and Anderson, 2002:
77). In other words, there would be a high de-
gree of uncertainty regarding the best model.

We can also measure the relative importance
of a variable with Akaike weights: one simply
sums the w; of the models including the vari-
able and compares it to the sum of the w; for the
models that do not (for an example, see Burn-
ham and Anderson, 2002: 167). However, one
should only contrast the relative importance of
variables when there is an equal number of mod-
els for both situations (i.e., models with vari-
able vs without). Instead of relying on the rel-
ative importance of a variable, a superior ap-
proach consists in formally assessing the magni-
tude of the effect of the explanatory variable on
the response variable with an estimate averaged
across all models (see multimodel inference be-
low).

AIC vs H, in model selection

The AIC is not a hypothesis test, does not have
an «-value, and does not use notions of signifi-
cance. Instead, it focuses on the strength of ev-
idence (i.e., A; and w;), and gives a measure of
uncertainty for each model. Thus, we can deter-
mine how likely a model is to be the best given
the data and models at hand. In contrast, con-
ventional (variable) model selection approaches
such as backward, forward, or stepwise selec-
tion procedures are generally based on hypoth-
esis tests, where at a certain P-value, a variable
is included or excluded (Zar, 1984; Hosmer and
Lemeshow, 1989; Afifi and Clark, 1996; Klein-
baum et al., 1998). These techniques can yield
different conclusions depending on the order in
which the models are computed, whereas the
AIC approach yields consistent results, regard-
less of the order in which the models are com-
puted and, more importantly, does not require
that models be nested (Anderson et al., 2000,
2001b; Burnham and Anderson, 2002: 88).
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Table 1. AIC, of the multiple linear regression models of mass lost by frogs after 2 h according to substrate type, shade
treatment, and weather variables. A total of 121 individuals were retained for analysis.

Model? Model Log- Kb AIC, A; w;
D likelihood

Shade subst mass mass2 1 —38.89 7 92.77 26.64 0.00
Shade subst mass mass2 shade*subst 2 —35.18 9 89.98 23.86 0.00
Mass mass2 3 —64.90 4 138.14 72.02 0.00
Shade mass mass2 4 —55.25 5 121.02 54.90 0.00
Subst mass mass2 5 —-51.39 6 115.52 49.39 0.00
Shade subst shade*subst 6 —124.05 7 263.09 196.97 0.00
Shade subst 7 —125.24 5 261.00 194.88 0.00
Subst 8 —128.33 4 265.00 198.88 0.00
Shade 9 —131.35 3 268.91 202.78 0.00
Shade subst mass mass2 air wind cloud 10 —24.09 10 70.18 4.06 0.12
Shade subst mass mass2 air wind cloud shade*subst 11 —19.62 12 66.12 0.00 0.88
Shade subst mass mass2 air shade*subst 12 —-31.07 10 84.15 18.03 0.00
Shade subst mass mass2 air 13 —34.90 8 87.08 20.95 0.00
Shade subst mass mass2 wind shade*subst 14 —29.08 10 80.16 14.04 0.00
Shade subst mass mass2 wind 15 —33.02 8 83.32 17.19 0.00
Shade subst mass mass2 cloud shade*subst 16 —28.65 10 79.31 13.18 0.00
Shade subtype mass mass2 cloud 17 —-32.76 8 82.80 16.67 0.00

4 Subst: substrate type; shade: trials shielded from the sun or not; mass: standardized initial mass of frogs; mass2: square of
initial mass; air: air temperature; wind: wind velocity (low wind vs high wind), cloud: percent cloud cover.
b Parameter count includes intercept and variance.

An example. Now, let’s illustrate the use of the variable to homogenize variances, and the initial
AIC, in a real data set adapted from Mazerolle  frog mass was standardized (i.e., values were
and Desrochers (unpublished data) which dealt  centered around each mean and reduced by the

with the mass lost by frogs on substrates as-  standard deviation).

sociated with environments having undergone For the purpose of this example, I chose a
anthropic disturbance. In this field experiment, set of 17 (R = 17) candidate models (table 1).
we submitted 126 green frogs (Rana clami-  Because small individuals have a greater sur-
tans melanota) to dehydration on three differ-  face/volume ratio and lose water faster than

ent substrates (i.e., Sphagnum moss, soil, or large frogs (Thorson, 1955; Schmid, 1965), I ex-
peat) in or out of the shade (shade provided  pected a curved response between the water lost

by an opaque tarpaulin): 21 frogs were sub-  to dehydration and frog initial mass. Thus, I in-
mitted to each combination of treatments. The  cluded the square of initial mass as a covariate
initial mass (g) before dehydration was mea-  in models. I also expected that frog water loss

sured, as well as air temperature (°C), percent  on a substrate would depend on the amount of
cloud cover, and wind velocity (low-no wind vs shade (shade vs no shade). To do so, I consid-
strong wind) at the start of each trial. See Maze-  ered the substrate x shade interaction in some
rolle (2004) for further details on the methods. models. Models 1-9 excluded weather variables.
The mass lost in water after 2 h was modeled I determined the effect of weather variables on
with a generalized linear model with normally-  mass loss after accounting for the other vari-
distributed errors (i.e., multiple linear regres-  ables. Models 10-17 consisted of initial mass
sion) fitted with maximum likelihood. Before = and substrate type (with or without the interac-
the analyses, 5 cases with missing data were tion), with one or all of the weather variables.
deleted (to avoid variations in the number of ob- ~ The global model (model 11) suggested good
servations used in the analyses), a log transfor- fit, based on visual inspection of the residuals
mation (base 2) was applied to the dependent  plotted against the predicted values.
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The results in table 1 indicate that model 11
with an Akaike weight of 0.88 is the best given
the set of 17 candidate models. Model 10, which
does not include the shade x substrate inter-
action, follows second, but relatively far be-
hind. Indeed, model 10 has a A; of 4.06 and
an Akaike weight of 0.12. Thus, model 11 is
7.3 times more likely to be the best model than
model 10 (evidence ratio = 0.88/0.12), and
reveals a relatively low amount of uncertainty
regarding the best model. One could base his
conclusions on model 11, given its very high
ranking, but this practice is generally not rec-
ommended unless w; > 0.90 (Burnham and
Anderson, 2002: 150). In most instances, sev-
eral models will compete for first place, and it
will be inappropriate to base predictions on the
model ranked in first place. Fortunately, as high-
lighted in the next section, there are ways to ad-
dress the issue.

When several models compete for first
place: multimodel inference

As noted above, in some instances, the “best”
model may have competitors for the top rank
(i.e., A; < 2, or equivalently, evidence ratios <
2.7). A solution to this problem is to base the
inference on the entire set of models, an ap-
proach termed multimodel inference or model
averaging. Indeed, instead of relying solely on
the estimates of the best model, we compute a
weighted average of the estimates incorporating
model uncertainty. In essence, we are using all
the information available from the entire set of
models to make inference and it is a very elegant
way of tackling the problem.

For a given parameter, the first step consists
in rearranging the AIC table with the models
containing the parameter of interest. Delta AIC
and Akaike weights are then recomputed for this
subset of the models. To conduct model aver-
aging, the estimate (i.e., the regression coeffi-
cient) of the parameter for each model is then
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weighted by the Akaike weights, as follows

where éi denotes the estimate for model i.
Similarly, one computes the precision (SE) of
the model-averaged estimate, termed the uncon-
ditional SE (i.e., a SE not restricted to a single
“best” model but based on the whole set)

Unconditional SE

R 2
= Zwi\/vAar(eAg,-) + (6 —0)

i=1

where %Tr(é,- |gi) represents the variance of the
estimate éi given model g;. Note that var(6;|g;)
equates to squaring the SE of 6;. Returning
to our example with dehydrated frogs, we can
easily compute the model-averaged estimate of
cloud cover to determine its effect on frog water
loss (table 2).

In many cases, model averaging reduces bias
and increases precision (Burham and Anderson,
2002). Once the model-averaged estimates and
unconditional SE are calculated, we can use
confidence intervals to assess the magnitude of
the effect. For a 95% confidence interval,

Upper 95% confidence limit
= estimate + (1.96)SE

and

Lower 95% confidence limit
= estimate — (1.96)SE.

Narrow intervals indicate precise estimates. We
conclude that the effect is different from O (i.e.,
there is a strong effect) when the confidence in-
terval excludes 0. In our dehydrated frog exam-
ple, the 95% confidence interval for the model-
averaged regression estimate of cloud cover
would be (—0.513, —0.146). In other words, we
can be 95% confident that the true estimate of
cloud cover is between —0.513 and —0.146.
The confidence interval excludes 0 and indicates
that cloud cover has a negative effect on frog
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Table 2. AIC. and associated measures recomputed to obtain the model-averaged estimate and precision (i.e., uncondi-
tional SE) of cloud cover. Values are based on multiple linear regression models of mass lost by 121 frogs after 2 h according

to substrate type, shade treatment, and weather variables.

Model® Model AIC, A; w; Regression SE of
ID estimate of estimate
cloud cover of cloud
cover
Shade subst mass mass2 air wind cloud 10 4.06 0.13 0.12 —0.328 0.097
Shade subst mass mass2 air wind cloud shade*subst 11 0.00 1.00 0.88 —0.330 0.093
Shade subst mass mass2 cloud shade*subst 16 13.18 0.00 0.00 —0.349 0.094
Shade subst mass mass2 cloud 17 16.67 0.00 0.00 —0.349 0.097
Model-averaged estimate —0.330
Unconditional SE 0.094

4 Subst: substrate type; shade: trials shielded from the sun or not; mass: standardized initial mass of frogs; mass2: square of
initial mass; air: air temperature; wind: wind velocity (low wind vs high wind), cloud: percent cloud cover.

water loss: the amount of water lost increases
with decreasing cloud cover.

Special issues with count data

Discrete data (i.e., data occurring as integers)
such as the number of individuals in a trap can
be modeled using Poisson regression (McCul-
lagh and Nelder, 1989; Agresti, 1996). How-
ever, it is common to encounter overdispersion
in such data. In other words, data vary more than
expected from data following a Poisson distrib-
ution (McCullagh and Nelder, 1989). Poisson-
distributed data have a mean equal to the vari-
ance (i.e., u = %), whereas overdispersion oc-
curs when the mean exceeds the variance (i.e.,
w > o2). Overdispersion may arise due to bio-
logical phenomena such as aggregation, or may
be a sign of inadequacy of a model. To de-
tect whether overdispersion occurs in a data set
subjected to Poisson regression, we can esti-
mate the variance inflation factor, ¢ (also called
the dispersion parameter), with the ratio of the
deviance over the residual degrees of freedom
(McCullagh and Nelder, 1989),

" Residual deviance
"~ Residual df
_ x? goodness-of-fit of global model
N df '

Note that the deviance of Poisson models
sometimes does not approximate well the x>
distribution, and as an alternative, one may es-
timate ¢ with the parametric bootstrap (Cooch
and White, 2001). Regardless of how it is com-
puted, if ¢ = 1, then no overdispersion oc-
curs. If ¢ exceeds 1, then there is indication of
overdispersion; values < 1 may suggest un-
derdispersion but often hint inadequate model
structure. A model with ¢ « 1 or ¢ > 4
suggests that a Poisson model is probably
not adequate in explaining the data at hand
(Burnham and Anderson, 2002: 68). Alterna-
tively, a negative binomial model could be used
to account for overdispersion (McCullagh and
Nelder, 1989; White and Bennetts, 1996). We
can easily account for overdispersion in the AIC
as follows,

K.

—2(log-likelih
QAIC = (log 1Ael ood) )
¢

Similarly, the AIC. can also be adjusted for
overdispersion:

2K(K +1)
QAIC, = QAIC+ —.
n—K-—1

Note that ¢ is an additional parameter to esti-
mate. Thus, it must be included in the count of
parameters. As the estimated ¢ will vary from
model to model, it is advised to use the ¢ of
the global model (i.e., the most complex model)
and use it consistently for the other models.
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Table 3. Candidate set of Poisson regression models for the number of metamorphosed anurans captured in minnow traps in

12 peatland and 12 upland ponds.

Model® Log- Kb QAIC®© A; w;
likelihood
Type invertpred —12.97 4.00 33.47 0.00 0.56
Type logperimeter invertpred —12.78 5.00 36.36 2.90 0.13
Logperimeter invertpred —14.90 4.00 36.96 3.49 0.10
Invertpred —16.58 3.00 37.07 3.61 0.09
Type —17.13 3.00 38.07 4.60 0.06
Type logperimeter —15.64 4.00 38.29 4.82 0.05
Intercept only —21.01 2.00 42.44 8.97 0.01
Logperimeter —20.90 3.00 44.86 11.39 0.00

4 Type: peatland vs upland; logperimeter: log of pond perimeter; invertpred: proportion of visits with water scorpions (Ranatra

sp.) captured.
b Parameter count includes intercept and ¢.

¢ QAIC, values are based on the variance inflation factor of the global model (¢ = 1.11).

The logic being that the most complex model
will yield the best estimate for ¢. Burnham and
Anderson (2002: 305) discuss further issues in
overdispersion, especially regarding model av-
eraging and estimating ¢ when no global model
exists. Because a ¢ > 1 implies data vary more
than they should according to the Poisson distri-
bution, we must adjust the SE of the regression
estimates by multiplying them by the square-
root of ¢ to reflect this variability. Note that ad-
justing with ¢ can change the ranking of the
models. As ¢ increases, the QAIC, will select
models with fewer parameters. Using ¢ will also
inflate the unconditional SE of the estimates and
widen confidence intervals.

An example with overdispersion in Poisson re-
gression. Consider a second example based
on minnow trapping data in ponds within peat-
lands and upland ponds. This data set stems
from Mazerolle (unpublished data, contact au-
thor to obtain data files) in which minnow
traps were deployed for three consecutive nights
and checked daily in 12 peatland ponds and
12 upland ponds in eastern New Brunswick,
Canada, to determine the number of metamor-
phosed anurans at each pond each day. The
number of traps in each pond was proportional
to pond size: I started with two traps for the
first 25 m? of pond surface and I added an ad-
ditional trap each time the area doubled sensu

Adams et al. (1997). A number of pond at-
tributes were measured, but we will limit our-
selves to three explanatory variables for the sake
of clarity in this example: pond type (peatland
vs upland), pond perimeter, and presence of an
invertebrate predator, water scorpions (Ranatra
sp.), expressed as the proportion of visits during
which Ranatra were caught in minnow traps.
Because trapping effort varied between ponds,
I added the log of trap nights as an offset vari-
able. An offset variable can be used to account
for data recorded as units of time, or effort, such
as trap rates in our example, but does not add
to the parameter count as it is included in the
dependent variable (see Agresti, 1996 for more
details).

Table 3 illustrates the set of 8 candidate mod-
els considered. Given the sample of 24 and to
avoid overfitting (too many variables for the
number of observations), I kept the models sim-
ple. These consisted in a global model consist-
ing of pond type, log of perimeter and pres-
ence of water scorpions. Models only included
main effects, as I did not anticipate interac-
tions between these variables. I did not include
the square of logperimeter because abundances
were low. I added the intercept-only model to
check whether it was better than more complex
models. The global model indicates that there is
overdispersion in the data, as the variance in-
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Table 4. Model-averaging of the regression estimate of pond type based on Poisson regressions of the number of
metamorphosed anurans captured in minnow traps in 12 peatland and 12 upland ponds.

Model? QAIC, A w; Regression SE of Adjusted
estimate of type SE of
type type®
Type logperimeter 38.29 4.82 0.06 —1.696 0.587 0.618
Type 38.07 4.60 0.07 —1.420 0.559 0.589
Type logperimeter invertpred 36.36 2.90 0.16 —1.188 0.618 0.651
Type invertpred 33.47 0.00 0.70 —1.348 0.560 0.590
Model-averaged estimate —1.349
Unconditional SE 0.611

4 Type: peatland vs upland; logperimeter: log of pond perimeter; invertpred: proportion of visits with water scorpions (Ranatra

sp.) captured.

b Value of SE mutliplied by the square-root of ¢, where & = 1.11.

flation factor (¢) = Residual deviance/df =
22.1115/20 = 1.11. Thus, we use the QAIC,
for model selection.

Table 4 shows that the model consisting of
pond type and presence of water scorpions is the
best given the data, but is followed moderately
closely by the global model (i.e., A; = 2.89). If
we want to conduct model-averaging for the es-
timate of any variable in this analysis, we must
first adjust the SE of the estimate(s) of inter-
est for overdispersion (i.e., by multiplying each
SE by the square-root of ¢). This is illustrated
for the estimate of pond type in table 4. We
can then compute the model-averaged estimate
and its unconditional SE as in the first example.
Finally, we conclude that the number of anu-
rans captured in minnow traps is greater in up-
land ponds than peatland ponds. Indeed, there is
strong evidence for an effect of pond type as the
0 is excluded from the 95% confidence interval
(—2.546, —0.151).

Advantages and limitations of AIC

The AIC provides an objective way of deter-
mining which model among a set of models is
most parsimonious. It is rigorous, founded on
solid statistical principles (i.e., maximum like-
lihood), yet easy to calculate and interpret (but
see Anderson and Burnham, 2002 for common
mistakes when using the AIC approach). All

the elements required to compute the AIC (i.e.,
log-likelihood, number of parameters, effective
sample size) can be obtained from most sta-
tistical analysis software, such as SAS, R, S-
PLUS, or SPSS. Some software report the AIC
directly, but in certain cases, it is inaccurate
(e.g., SAS proc MLR, Stafford and Strickland,
2003). Therefore, practicioners should double-
check the AIC values in the output of their pro-
gram of choice to ensure that they are correctly
computed.

The AIC has very attractive properties. First,
as discussed earlier, it is very proficient in model
selection. Second, and perhaps most revolution-
ary, one can base inferences on the whole set of
models (multimodel inference) and incorporate
model uncertainty in the estimates and precision
of parameters (see example above), instead of
drawing conclusions on a single model. Third,
concepts of statistical significance become su-
perfluous with this approach. Thus, much is
gained in objectivity. Anderson et al. (2001c)
suggest using it to solve conflicts in the ap-
plied sciences. Though information theoretic
approaches have been developed for larger sets
of candidate models, the AIC can also be used
in cases where only two models are considered
(Burnham and Anderson, 2002: 184; Buckley
and Beebee, 2004).

Despite all its advantages, the AIC approach
is not a panacea. As in all other modeling sit-
uations, the usefulness of a model relies on the
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quality of the data used to generate it. Moreover,
the conclusions of a study will depend on the
set of candidate models one has specified before
conducting the analyses: a better model will re-
main unknown unless it is specified in the can-
didate set. Though in many situations the AIC is
to be preferred over hypothesis-testing, the lat-
ter still has its place in true experiments, that
are controlled, randomized, replicated, and with
few explanatory variables. But even when test-
ing hypotheses in the context of experiments,
investigators should routinely report the mag-
nitude of the effect of the variable and its pre-
cision, as this yields more information than P-
values and simple declarations of significance.
Providing estimates and their associated SE’s
greatly improves the value of a study, as these
can be used subsequently in meta-analyses.

A flash in the pan or here to stay?

In conclusion, the information-theoretic ap-
proach revolving around the AIC shows great
promise for various applications in ecology,
conservation biology, behavioral ecology, and
physiology. It is an efficient tool in model selec-
tion, for situations generated by observational
studies conducted in the field, where regres-
sions are sought to model a given pattern or
process as a function of a number of explana-
tory variables. In addition, this approach allows
one to compute estimates for variables of in-
terest across the whole set of models (multi-
model inference), which is fundamentally supe-
rior than basing inferences on a single “best”
model. Straightforward in computation and in-
terpretation, the AIC and its associated philoso-
phy should be seriously considered by herpetol-
ogists and any other biologists faced with the
task of analysing empirical data.
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