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Abstract. Knowledge of leaf chemistry, physiology, and life span is essential for global
vegetation modeling, but such data are scarce or lacking for some regions, especially in
developing countries. Here we use data from 2021 species at 175 sites around the world from
the GLOPNET compilation to show that key physiological traits that are difficult to measure
(such as photosynthetic capacity) can be predicted from simple qualitative plant
characteristics, climate information, easily measured (“soft”) leaf traits, or all of these in
combination. The qualitative plant functional type (PFT) attributes examined are phylogeny
(angiosperm or gymnosperm), growth form (grass, herb, shrub, or tree), and leaf phenology
(deciduous vs. evergreen). These three PFT attributes explain between one-third and two-
thirds of the variation in each of five quantitative leaf ecophysiological traits: specific leaf area
(SLA), leaf life span, mass-based net photosynthetic capacity (A4mass), Nitrogen content (Nyass)s
and phosphorus content (Pp.). Alternatively, the combination of four simple, widely
available climate metrics (mean annual temperature, mean annual precipitation, mean vapor
pressure deficit, and solar irradiance) explain only 5-20% of the variation in those same five
leaf traits. Adding the climate metrics to the qualitative PFTs as independent factors in the
model increases explanatory power by 3—11% for the five traits. If a single easily measured leaf
trait (SLA) is also included in the model along with qualitative plant traits and climate metrics,
an additional 5-25% of the variation in the other four other leaf traits is explained, with the
models accounting for 62%, 65%, 66%, and 73% of global variation in N5, Pmasss Amass» and
leaf life span, respectively. Given the wide availability of the summary climate data and
qualitative PFT data used in these analyses, they could be used to explain roughly half of
global variation in the less accessible leaf traits (4,55, leaf life span, Npaes, Pmass); this can be
augmented to two-thirds of all variation if climatic and PFT data are used in combination with
the readily measured trait SLA. This shows encouraging possibilities of progress in developing

general predictive equations for macro-ecology, global scaling, and global modeling.
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INTRODUCTION

Foliage attributes such as leaf structure, nutrient
content, and net photosynthetic capacity are key
determinants of carbon dioxide and water vapor fluxes
between vegetation and the atmosphere at every
temporal and spatial scale and of biogeochemical cycles
that link soil, climate, and atmosphere at the same
scales. Thus, the ability to characterize key leaf
functional traits such as photosynthetic capacity for
species and communities at regional, continental, and
global scales is important for a variety of scientific
disciplines, including global biogeography and macro-
ecology (Diaz et al. 2004), as well as for vegetation,
carbon balance, and land surface models (e.g., Haxeltine
and Prentice 1996, Bonan et al. 2003, Sitch et al. 2003)
such as those used to predict responses to changes in
land use, atmospheric chemistry, and climate.
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leaf life span, nitrogen, phosphorus; photosynthesis; plant functional type; specific leaf area.

Many ecosystem process models simplify real vegeta-
tion by dividing species into categories called “plant
functional types” (PFTs). Leading models include the
Sheffield, LPJ, and NCAR dynamic global vegetation
models (Woodward et al. 1995, Bonan et al. 2003, Sitch
et al. 2003, Woodward and Lomas 2004) and biogeo-
graphic and biogeochemical models such as BIOME4
(Kaplan et al. 2003) and BIOME-BGC (White et al.
2000). In these models, each PFT has a particular set of
traits and makes up a particular proportion of the
vegetation at a site. But recent progress in understanding
ecological strategy variation across plant species (Reich
et al. 1997, 2003, Wright et al. 2004) suggests
possibilities for building new vegetation schemes that
are conceptually cleaner, computationally easier, and
underpinned by richer data and that express trait
variation more satisfactorily.

Variation across species in most ecologically impor-
tant traits is naturally continuous rather than divided
into classes. Further, although traits such as leaf life span
or mass-based leaf nitrogen content differ on average
between herbs, grasses, and woody plants, there is wide
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spread within categories and broad overlap between
them (Reich et al. 1997, Wright et al. 2004). Similarly,
comparisons between habitats often show overlapping
ranges of trait values, despite different averages. Thus,
an alternative to using PFTs in vegetation models would
be to describe trait variation among sets of coexisting
species with a mean and an index of spread for each trait.

Although a wealth of gas exchange data has been
published, there is an inevitable bias towards econom-
ically important species in developed regions of the
world, with few data available from some less developed
regions (Wright et al. 2004, but see Han et al. 2005, He
et al. 2006). This imbalance is a potential limitation to
the generality of global models of land surface processes.
Our objective in this paper is to advance our capacity to
predict patterns of variation in leaf traits, with a view to
improving coverage for regions where ecophysiological
data are scarce. We ask whether well-known qualitative
characteristics of species, which are often used to define
plant functional groups, provide a useful foundation for
making such predictions, particularly when combined
with other widely available data, such as climate data.
Second, we ask whether these qualitative plant charac-
teristics are more poorly, similarly, or better related to
plant ecophysiological traits than are climate variables,
which are also generally more widely available than
ecophysiological data. Third, we ask whether the
addition of information about an easily obtained leaf
trait, specific leaf area (SLA), to the PFT and climate
data allows substantial improvements in ability to
predict the less accessible traits such as gas fluxes,
chemistry, and leaf life span. If so, this would suggest
that coordinated programs to measure SLA could be
used to improve global data bases about leaf physiology
in general. We focus on SLA because this trait, besides
being easy to measure, is a strong (positive) correlate of
the photosynthetic capacity and potential relative
growth rate of plants and inversely related to the degree
of physical defense of a leaf (Reich et al. 1991, 1997,
Wright and Westoby 2002, Cornelissen et al. 2003).

We used the Global Plant Trait Network (GLOP-
NET) database (Wright et al. 2004, 2005) to assess
several alternative approaches to estimating photosyn-
thetic capacity, leaf life span, leaf nitrogen content, and
leaf phosphorus content from more easily obtained and
more widely available data. This database covers 2222
species from 175 sites on six continents. The present
paper builds on previous work that has used these data
to assess the generality of scaling relationships among
quantitative leaf ecophysiological traits that define
trade-off surfaces (e.g., Wright et al. 2004) or the
relationship of such surfaces to large-scale climate
variability (Wright et al. 2005).

METHODS
Leaf and climate data

Data were compiled from both published and
unpublished sources, although all quantitative data
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were published in Wright et al. (2004). Only site-based
data sets were used, i.e., those to which we could
reasonably attach climate data. The total database
consists of 2548 species—site combinations from 175
sites: 2021 different species in total, with 342 species
occurring at more than one site (data sources and the
data set itself are available in appendices associated with
Wright et al. [2004]). Site mean annual temperature
(MAT) ranged from —16°C to 27.5°C, and mean annual
rainfall ranged from 133 to 5300 mm/yr. This covers
most of the range of MAT/rainfall space in which higher
plants are found. We focus on the following leaf traits,
all defined as in Wright et al. (2004): photosynthetic
capacity per unit leaf mass (Apag); leaf nitrogen and
phosphorus concentration per unit mass (Nyass and
P.ss); leaf life span; and SLA, defined here as the one-
sided projected area of foliage per unit dry mass
(Cornelissen et al. 2003).

Species were grouped in PFTs by the simplest possible
groupings: phylogeny (contrasting gymnosperms and
angiosperms), growth form (grasses, forbs, shrubs, and
trees), and leaf habit (deciduous vs. evergreen). The
original GLOPNET data set included data for vines and
a number of other types. There was insufficient
replication of these, so only the four main types were
included herein.

Site climate was considered in terms of temperature,
rainfall, vapor pressure deficit (VPD), and solar
radiation annual, summed or averaged over annual
periods as well as for the growth season period only.
Details on sources and calculations of climate data were
provided in Wright et al. (2004). Results using yearly
and growth season climate indices or indices of
seasonality were similar; hence for brevity we only
report results relating to yearly climate averages.
Climate variables were cross-correlated to an extent.
Across the 175 sites, VPD and solar irradiance were
more closely associated with MAT than with mean
annual rainfall although, clearly, both MAT and rainfall
affect a property such as VPD.

Where traits were reported separately for sun leaves
and shade leaves in the source publications, only the
former were used. If data were presented separately for
recently matured and old leaves, recently matured leaves
were used. That is, where there was a choice, we used
data from leaves closer to their “peak” physiological
stage, prior to significant age- or light-related decline in
nutrient contents and photosynthetic capacity (Reich et
al. 1991).

Data analysis

All leaf traits were approximately log-normally
distributed across the data set, as were site rainfall and
VPD. Accordingly, these variables were log;o-trans-
formed prior to analyses. Mean annual temperature and
solar radiation were left untransformed since their
distribution was approximately normal. Simple correla-
tion and multiple regression analyses were used for
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TABLE 1.
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Multiple regression analyses of five ecophysiological traits (mass-based net photosynthetic capacity [Amass], phosphorus

content [Ppass], Nitrogen content [N, leaf life span, and specific leaf area [SLA]) in relation to three plant functional types

(PFT) attributes.

Phylogeny Growth Leaf
Trait Mean = SE R? n F form F habit F
A mass 1.973 = 0.019 0.51 747 04.9%** 32.5%*%* 199.5%**
Priass —1.102 = 0.046 0.37 736 4.3% 29 5¥** 153.7%%*
mass 0.217 = 0.010 0.33 1931 28.0%** 76.6%** 290.2%**
Leaf life span 0.965 = 0.021 0.67 723 77.9%** 48.9%** 637.9%%*
SLA 1.991 = 0.012 0.40 2164 52.3%%* 92.9%** S11.0%**

Notes: We report the mean of the logarithm of each parameter and the standard error (SE) of the predicted values;  is sample size.
The F values and their significance are shown for each of the dependent variables. All whole models were significant at P < 0.001.

* P < 0.05; *** P < 0.001.

quantifying relationships between single leaf traits and
PFT attributes, climate variables, SLA, and their
combination. Inclusion of interaction terms did little
to improve the variance explained (typically by 1-4%)
compared to models without interaction terms (those
shown in Tables 1-4). Moreover, models with interac-
tions (including those with all interaction terms or the
best models following backwards stepwise regression)
had Akaike’s Information Criterion values that were
similar to or usually greater than the simpler models (no
interactions) with fewer terms, and thus the latter
models were considered the best. Thus, interactions
were uniformly omitted from all presented models
(Tables 1-4, Appendices A—C). All statistical procedures
were carried out with JMP Statistical Software 5.0.1.a
(SAS Institute, Cary, North Carolina, USA).

RESULTS AND DiscussioN

Easily available qualitative PFT information ex-
plained a substantial portion of the total variation in
all five leaf functional traits (Table 1, Appendix A). The
PFT data by itself explained 33%, 37%, 40%, 51%, and
67% of the variation in Npass, Pmasss SLA, Amass, and
leaf life span, respectively (these represent whole-model
#? values with phylogeny, growth form, and leaf habit
included). In contrast, climate data (MAT, annual
precipitation, mean VPD, and solar irradiance) collec-
tively explained between 5% and 20% of variation in the
same five leaf traits (Table 2, Appendix B). Thus,
variation among species within sites is sufficiently large
that climate alone predicts only a small fraction of leaf
functional trait variation (Wright et al. 2005). In

TABLE 2.

daily-summed solar radiation (RAD).

contrast, individual species can be classified according
to combinations of major groupings (such as herb vs.
trees and deciduous vs. evergreen) that differ in
predictable ways in their average leaf traits. Therefore,
despite appreciable variation in individual leaf traits
within any individual PFT grouping, these differ
sufficiently on average among PFTs (Fig. 1) that their
(three-way) combination explains one-third to two-
thirds of global variation among species in the five leaf
traits.

All three PFT groupings (angiosperm/gymnosperm,
functional type, or leaf habit) were significant predictors
of all five ecophysiological traits in the “PFT alone”
models (Table 1, Appendix A). As generally observed
previously, species that are gymnosperms, evergreen, or
woody on average occupy positions closer to the “slow
metabolism” end of the leaf trait gradient than species
that are angiosperms, deciduous, or herbaceous (Fig. 1).
The “slow metabolism” end of the leaf economics
spectrum is associated with 10w Apass, Nmasss Prmasss
and SLA and persistent leaves (Reich et al. 1997, 1999,
Wright et al. 2004). In the “climate-alone” models, from
one to four of the climate metrics were significant
predictors of each of the five ecophysiological traits, and
each climate metric was significant in models for 2, 3, or
4 of the ecophysiological traits (Table 2).

Although most evergreen species have longer-lived
leaves than most deciduous species, there is a class of
species that are both evergreen and characterized by
short-lived foliage (Reich et al. 1997, 1999, Wright et al.
2004). This group of species is numerically small globally
(e.g., ~4% of the woody plants for which we know

Summary of multiple regression analyses of five ecophysiological traits (as in Table 1) in relation to climate metrics:
mean annual temperature (MAT), annual precipitation (PPT),

mean annual vapor pressure deficit (VPD), and yearly mean

Trait R n MAT F PPT F VPD F RAD F
Apass 0.05 764 0.07 6.8%%* 1.8 2.8
s 0.19 737 19.0%%% 0.4 8.5 83.6%xx
nass 0.12 2026 5.6 5.1 0.07 91,9
Leaf life span 0.10 744 0.08 0.29 0.57 14.3%%%
SLA 0.20 2331 19. 3% 61.3* 4.9% 99, 4%

Note: All whole models were significant at P < 0.001.
* P < 0.05; *** P < 0.001.
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TaBLE 3. Whole-model R? values for multiple regression analyses of five ecophysiological traits (as in Table 1) in a series of models
with increasing numbers of independent variables.

Leaf
Model Amuss Pmass Nmass life span SLA
VEGETATION 0.51 0.37 0.33 0.67 0.40
CLIMATE 0.05 0.19 0.12 0.10 0.20
VEG + CLIMATE 0.54 0.43 0.37 0.68 0.51
VEG + CLIMATE + SLA 0.66 0.65 0.62 0.73
VEG + CLIMATE + SLA + N 0.73 0.76 0.75
VEG + CLIMATE + SLA + N + leaf life span 0.80 0.76

Notes: The models labeled “VEGETATION” included phylogeny, growth form, and leaf habit; “CLIMATE” included mean
annual temperature, rainfall, mean vapor pressure deficit, and mean solar irradiance; “VEG + CLIMATE” included the first two
sets combined; “VEG + CLIMATE + SLA” included the prior set plus SLA; “VEG + CLIMATE + SLA + N” included the prior
set plus percentage of nitrogen. See Tables 1, 2, and 4 for more details regarding the models in the first, second, and fourth rows,

respectively.

evergreen/deciduous status in the GLOPNET survey),
but includes a species type, woody evergreen pioneers,
that is important in tropical forests and that has traits
similar to woody deciduous pioneers, including short
leaf life span, high nutrient concentrations, and high
metabolic rates (Reich et al. 1991, 1997, 1999). In the
current analyses, our simple division of all taxa into
deciduous vs. evergreen classes thus includes species
with leaves with deciduous-like characteristics in the
evergreen class. Does this weaken our models? We
assessed this in two ways. First we created a classifica-
tion that lumped species into one of two groups: (1)
evergreen species with leaf life span >8 months and (2)
deciduous species plus evergreen species with leaf life
span <8 months (similar to dividing all species into
those with leaf life span >8 months vs. <8 months).
Secondly, we simply divided species into those consid-
ered “pioneer” species and those that are not. The first
classification improved most model fits by 2-5%
(compared to Table 1) but requires data quite difficult
to obtain. The second classification improved model fits
marginally, if at all. Thus, the existence of species with
the relatively unusual trait combination of evergreen but
short-lived leaves only modestly lessens the predictive
power of the simple models based on simple and widely
available classifications.

Can we increase explanatory power by combining
qualitative plant attributes and climatic data? Adding
the climate metrics to the PFT data increased explan-

atory power by 3—11% for the five quantitative leaf traits
(Table 3), thus accounting for between 37% (Npass) and
68% (leaf life span) of global variation in these five traits.
If the most easily measured of the quantitative traits
(SLA) is also included in the model, an additional 5—
25% of the variation is explained for each of the four
other leaf traits, with the result that between 62% and
73% of global variation in Np.ss, Pmass, leaf life span,
and A, can be explained (Tables 3 and 4, Appendix
C). The PFT and climate metrics generally remain
significant in these models: for instance, A, Was
positively related to MAT and solar radiation and was
negatively related to rainfall and VPD (Table 4,
Appendix C).

Adding N.. to predictive models may also be a
viable option. Although not as easy to determine as
SLA, the total cost of analyzing, say, 1000 samples for N
content would still be 10-fold lower than the cost of
purchasing an infrared gas analysis system and associ-
ated chambers for making gas exchange measurements.
Measuring canopy N from remote sensing may also
become operationally feasible in the future (Smith et al.
2003). When N, was added to regression models
already containing VEG, CLIMATE, and SLA, an
additional 7% and a total of 73% of total variation in
Amass Was explained (Table 3), or 75-76% of total
variation in leaf life span and Ppuss.

To test whether these multiple regression relationships
based on the entire data set would yield reliable

TaBLE 4. Multiple regression analyses of four ecophysiological traits (mass-based net photosynthetic capacity [A4,ss], phosphorus
content [P, nitrogen content [Ny, and leaf life span) in relation to plant functional type (PFT) information, climate
metrics (mean annual temperature [MAT], annual precipitation [PPT], mean annual vapor pressure deficit [VPD], yearly mean
daily-summed solar radiation [RAD]), and specific leaf area (SLA).

Phylogeny Growth Leaf
Trait R F form F habit F MAT F PPTF VPD F RAD F SLA F
Amass 0.66 741 35.4%x* 22.8%¥* 48.4%** 8.8%* 39.6%** 5.9% 8.8%* 274.4%*x*
mass 0.65 724  24.58%%* 12,745 7.6%* 0.6 31.2%%* 16.1%%* 23.8%%* 423.9%%*
‘mass 0.62 1852 0.03 26.9%%* 4.5% 0.2 49.9%** 4.4% 7.5%* L151.2%**
Leaf life span 0.73 671 49 4x** 27.4%%x 259 2% 0.5 0.6 13.2%%% 9.9%* 114.3%%*

Notes: The F values and their significance are shown for each of the dependent variables. This provides details of the fourth
model in Table 3. All whole models were significant at P < 0.001.

* P <0.05; % P <0.01; *** P < 0.001.
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Fic. 1. Box plots of five leaf traits: (a) specific leaf area

(SLA), (b) leaf life span, (c) mass-based N concentration
(Nmass)> (d) mass-based P concentration (Py,,ss), and (¢) mass-
based net photosynthetic capacity (4n.ss), by qualitative plant
functional type (PFT) classifications that separate species by
phylogeny (angiosperm vs. gymnosperm), leaf habit (Ever,
evergreen; Dec, deciduous), and growth form (G, grass; H,
herb; S, shrub; T, tree). The box plots summarize the
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predictions, we derived the same relationships as shown
for the entire data set (Tables 1-4) using one-half of the
data (randomly chosen) and then predicted the quanti-
tative leaf traits for the other half of the data set. The fits
(Fig. 2) were generally very close to those generated for
the entire data set.

There is close coordination, physiologically and
evolutionarily, between the five quantitative leaf traits
measured in this study (Reich et al. 1997, 1999, Wright
et al. 2004), and thus a sizeable fraction of total
variation in one trait can be explained by other traits.
However, all of these traits require time, effort, and
funds to obtain, and all but SLA also require substantial
equipment, analytical, or time costs. Thus, other than
SLA the other traits do not offer an easy, simple, cheap
surrogate index for functional leaf traits, and obtaining
SLA data itself is not without time, effort, and cost
(Cornelissen et al. 2003). In contrast, the combination of
PFT information and simple climate metrics, both
generally and freely available, explain a similar fraction,
or roughly half (mean of 51% for the five leaf traits;
Table 3), of all variation in the selected leaf traits, as do
individual leaf traits in relation to one another (mean of
48% for the 10 bivariate relations of the five quantitative
leaf traits presented in this paper; Wright et al. 2004).
Given the much greater availability of simple PFT
information and databases on vegetation distribution
than of physiological data, these offer promise for
incorporation into predictive models as well as models
driven by remotely sensed information. Moreover, the
combination of PFT, climate, and SLA explain approx-
imately two-thirds of global variation in the other leaf
traits. Given that we do not have enough data to fully
explore interactions between PFTs and climate variables
and that we use only linear effects, there is ample
opportunity for further refinements of such analyses and
for development of predictive models that are statisti-
cally more sophisticated than used here. We view this as
a promising beginning, given that a greater quantity of
and better metrics for each of these variables can be
obtained, and as well, other metrics may become
available (e.g., soils data) that additionally can be used
with these in future models.

Improved ability to predict leaf attributes at a species
level will be particularly advantageous in multispecies
canopies. Given the heterogeneity among species within
sites (Reich et al. 1999, Wright et al. 2004), the
importance of species and functional-group heterogene-
ity and diversity to ecosystem processes, including
responses to global environmental change (e.g., Reich
et al. 2004), and the likelihood that the physiological

-
distribution of points for each variable and group. The ends of
the box are the 25th and 75th percentiles or quartiles. The gray-
shaded area between the quartiles is the interquartile range. The
line across the middle of the box is the median value. The lines
extending from the ends of the box denote the maximum and
minimum values.
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response of a community canopy based on mean values
is not necessarily the same as the responses of a real
canopy made up of species differing widely in intrinsic
leaf traits, it may prove necessary at some point to
consider this functional diversity in models (Garnier et
al. 2004). In many, but certainly not all, areas of the
globe there is some information about the compositional
make-up of vegetation communities, even when there is
little or no information about ecophysiology. In such
cases, predicting the traits of the species in those
communities and then aggregating those traits to the
community as a whole weighted by their relative
abundances will provide not only a mean but a notion
of the functional diversity of the community. In
contrast, predictions based solely on climate or a
dominant functional type would only provide a mean
value. As models improve, one would expect that land
surface and vegetation dynamics models would incor-
porate heterogeneity of vegetative properties as well as
the average of those properties.
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APPENDIX A
Model parameters for the models shown in Table 1 (Ecological Archives A017-078-Al).

APPENDIX B
Model parameters for the models shown in Table 2 (Ecological Archives A017-078-A2).

APPENDIX C
Model parameters for the models shown in Table 4 (Ecological Archives A017-078-A3).



