Indirect effects of urban development on understory plant communities of Mont St.Hilaire

Robin Beauséjour, Tanya Handa, Martin Lechowicz, Benjamin Gilbert & Mark Vellend

Wr McGill

UNIVERSITÉ DE SHERBROOKE

Importance of the herbaceous layer

Over-density of white-tailed deer

□ Higher survival rate of deer in exurban areas

□ Since 1950 : demographic explosion →
since 1980 : increase of deer populations →
lagged responses in herbaceous communities ?

(Augustine & Jordan, 1998; Storm etal. 2007)

Exotic earthworm invasion

Absent from Quebec prior to European settlement

Zone free of native earthworms after the last glaciation

- Introduction and spread of exotic earthworms is closely related to human disturbances
- Timing of disturbances is a crucial factor because invasion is a slow process

Research objectives

- 1) Assess changes in the understory plant communities of Mont St-Hilaire during recent decades
- 2) Evaluate the relative importance of two drivers of changes: deer and earthworms

Hypotheses

- 1) Herbaceous communities have become simplified during recent decades
- 2) Deer grazing pressure and the spread of earthworms have been important drivers vegetation change
- 3) Earthworms invasion has been greatest where the oldest human disturbances occurred

Study site: Mont-Saint-Hilaire (MSH)

History of anthropogenic disturbances on MSH

Mountain Village

Partial cuts

Apples production

Quarries

Fishing

Tourism

Today

History of anthropogenic disturbances on MSH

Apples production

Quarries

Fishing

Tourism

Methodology : resampling permanent sites

9-year time span

(Gilbert & Lechowicz 2004)

Methodology : resampling permanent sites

9-year time span

(Gilbert & Lechowicz 2004)

Methodology : *a priori* predictions using "tolerance traits"

Results for the 9-year time span

Sampling period	Species richness (No. of taxa)	Abundance (% cover)	
2002	195	47	
2011	182	34	
Student-t test (paired)	t = 0.1021 df = 68 p-value = 0.919	t = 4.92 df = 68 p = 5.781e-06 *	

Results for the 9-year time span

 \mathbf{X} = statistically significant (0.05 level)

Results for the 40-year time span

Sampling period	Species richness (No. of taxa)	Abundance (No. of presences)
1969-1979	83	1169
2012	59	417

Results for the 40-year time span

Stages of earthworm invasion

Relatively little invasion		Highly invaded	
Stage 0	No adults	Stage 3	2
Stage 1	2	Stage 4	
Stage 2		Stage 5	

Dispersal of earthworms on MSH

Explanation of earthworm dispersal

Explanation of earthworm dispersal

Explanation of earthworm dispersal

Some conclusions

- Substantial changes have occurred in understory plant communities during recent decades
- Exotic earthworms and deer have likely driven some of these changes
- Past and recent urbanization of the region have likely had a direct impact on these two drivers

- Mark Vellend & Tanya Handa (supervisors)
- Bill Shipley, Martin Lechowicz & Benjamin Gilbert (committee)
- Anne-Sophie Goyette, Leonardo Claver Garcia & Véronique Demers (field and lab assistance)
- Handa & Vellend lab members
- David Maneli, Mélanie Desrochers & Daniel Lessieur (technical support)

Fonds de recherche sur la nature et les technologies QUÉDEC

