
Chapter 4
Dealing with Heterogeneity

This chapter, and the following three chapters, discuss solutions to the problems
introduced in Chapters 2 and 3: heterogeneity, nested data, temporal correlation,
and spatial correlation. We use both the linear regression model and the additive
model as starting points. Figure 4.1 shows an overview of the methods we discuss
in Chapters 4, 5, 6, and 7. In all these chapters, the model consists of a fixed term
and a random term. The fixed term describes the response variable Y as a function
of the explanatory variables via α + β1 × X1 + . . . + βq × Xq in linear regression
or α + f1(X1)+. . .+ fq(Xq) in additive modelling. This part of the model is described
in Appendix A and Chapter 3. The random part contains components that allow
for heterogeneity, nested data (random effects), temporal correlation, spatial corre-
lation, and a real random term. It is also possible to have a combination of these
components.

If the random part only contains the real random term, we are back to linear
regression or additive modelling. If it allows for nested data, the resulting model is
called a mixed effects model. If it only allows for heterogeneity, we call it a gener-
alised least squares (GLS) model. This is essentially a weighted linear regression.
GLS is the subject of this chapter. It is tempting to call the whole equation in Fig. 4.1
mixed effects modelling (or just mixed modelling), even if it only contains the het-
erogeneity bit, but strictly speaking this is wrong. However, as software routines for
GLS, auto-correlation and nested data can all use the same R package, and some-
times the same routines, then it is easy to get confused about names.

We closely follow Chapter 5 in Pinheiro and Bates (2000), and the first 5 chap-
ters of Verbeke and Molenberghs (2000). We also made extensive use of Diggle
et al. (2002).We strongly recommend these books, as they provide a good technical
explanation and a more unified overview of mixed modelling techniques than we
have provided, albeit at a much higher mathematical level. Another good ecological
source for the linear mixed model is Schabenberg and Pierce (2002), but it does not
contain R code.

For the additive mixed modelling, Ruppert et al. (2003) and Wood (2006) are
some of the few available books. But again, these are rather technical.

If you are willing to read non-ecological textbooks, we strongly recommend West
et al. (2006), as it contains a series of case studies. However, a basic familiarity
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Fig. 4.1 Outline of the different methodologies discussed in Chapters 4, 5, 6, and 7. The fixed
part consists of the explanatory variables as we know from linear regression or additive modelling.
The random part consists of a real random term and terms that allow for heterogeneity, nested
data (random effects), temporal correlation, or spatial correlation. The subject of this chapter is
heterogeneity

with linear mixed modelling is recommended as their first chapter summarises
the underlying theory rather quickly. Other useful books, but mainly focussed on
economics and social science are Goldstein (2003), Raudenbush and Bryk (2002),
Snijders and Bosker (1999), and at a higher mathematical level, Jiang (2007).

The confusing aspects of most of these books are the wide range of different
names and underlying mathematical notation. Mixed modelling, multilevel analysis,
hierarchical linear models, and repeated measurements are just a few of the names
that all refer to the same set of models.

4.1 Dealing with Heterogeneity

4.1.1 Linear Regression Applied on Squid

Several examples in Chapters 2 and 3 showed residual spread varying per stratum
(level) of a nominal variable, or increasing or decreasing along an explanatory vari-
able. For example, the spread in pelagic bioluminescent data (Chapter 2) decreased
at deeper depths, and both the Hediste diversicolor and wedge clam data sets (Chap-
ter 2) showed different residual spread per stratum for some of the variables (month,
biomass, nutrient). This violates the homogeneity of variance assumption, one of
the most important assumptions of linear regression and additive modelling. Ignor-
ing this problem may result in regression parameters with incorrect standard errors,
and an F statistic no longer F distributed and the t statistic not following a t distribu-
tion. This invalidates the statistics used in Chapters 2 and 3 for assessing statistical
significance (Wooldridge, 2006). In this section, we provide several solutions to het-
erogeneity. The easiest solution is a data transformation, but we try to avoid this for
as long as possible. In our view, heterogeneity is interesting ecological information
that you should not throw away, just because it is statistically inconvenient. With a
‘little’ bit of extra mathematical effort, heterogeneity can be incorporated into the
models and can provide extra biological information.

To illustrate the methods, we use data published by Smith et al. (2005), who
looked at seasonal patterns in reproductive and somatic tissues in the squid Loligo
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forbesi. They used several variables on female and male squid, but in this chapter,
we only use the dorsal mantle length (in mm) and testis weight from 768 male squid.
The aim is to model the testis weight as a function of the dorsal mantle length (DML)
and the month recorded. The idea behind the original analysis was to investigate
the role of endogenous and exogenous factors affecting sexual maturation, more
specifically to determine the extent to which maturation is size-related and seasonal.
Further biological information can be found in Smith et al. (2005). Our starting point
is a linear regression model of the form (in words):

Testisweighti = intercept + DMLi + Monthi + DMLi:Monthi

+ residualsi
(4.1)

Month is used as a nominal variable (with 12 levels) and is DML fitted as a
continuous variable. The notation ‘:’ is used for the interaction between DML and
Month. Previous work on the related species Loligo vulgaris showed graphically that
maturity was a function of both size and season, and that size-at-maturity differed
between seasons (Raya et al., 1999). The index i runs from 1 to 768. The crucial
assumption in Equation (4.1) is that the residuals are normally distributed with a
mean of 0 and the variance is σ 2. In mathematical notation

εi ∼ N (0, σ 2)

where εi are the residuals. The important thing is that var(εi) = σ 2. The following
R code loads the data, applies linear regression, and produces the validation graphs
in Fig. 4.2. Note that there is a clear violation of homogeneity.

> library(AED); data(Squid)

> Squid$fMONTH <- factor(Squid$MONTH)

> M1 <- lm(Testisweight ∼ DML * fMONTH, data = Squid)

> op <- par(mfrow = c(2, 2), mar = c(4, 4, 2, 2))

> plot(M1, which = c(1), col = 1, add.smooth = FALSE,

caption = "")

> plot(Squid$fMONTH, resid(M1), xlab = "Month",

ylab = "Residuals")

> plot(Squid$DML, resid(M1), xlab = "DML",

ylab = "Residuals")

> par(op)

The DML * fMONTH fits the main terms DML and MONTH (as a factor) and the
interaction between these two variables (‘∗’ replaces the ‘:’ from the word equation
to denote interaction). Alternatively, code that does the same is DML + fMONTH +
DML:fMONTH. This keeps the notation similar to the one we used in Equation (4.1).
By default, the plot command produces four graphs (see Chapter 2), but the
which = c (1) ensures that only the residuals versus fitted values are plot-
ted. We decided not to add a smoothing curve (add.smooth = FALSE)
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Fig. 4.2 A: Residuals versus fitted values. B: Residuals versus month. Because month is a nom-
inal variable, boxplots are produced. C: Residuals versus DML. Panel A shows that there is clear
violation of heterogeneity. Panels B and C were made to detect why there is heterogeneity

and omit the caption (caption = ""). All other commands are discussed in
Chapters 2 and 3.

The numerical output (not shown here) shows that all regression parameters
are significantly different from 0 at the 5% level. The problem is that we can-
not trust these results as we are clearly violating the homogeneity assumption
(note the cone shape pattern of the residuals in Fig. 4.2A). This means that the
assumption that the residuals are normally distributed with mean 0 and vari-
ance σ 2 is wrong. However, in this case, the homogeneity clearly has an identi-
fiable structure; the larger the length (DML), the larger the variation (Fig. 4.2C).
So, instead of assuming that the residuals have variance var(εi) = σ 2, it might
make more sense to assume that var(εi) increases when DMLi increases. We
can implement this in various mathematical parameterisations, and we discuss
these next.

4.1.2 The Fixed Variance Structure

The first option is called the fixed variance, it assumes that var(εi) = σ 2 × DMLi,
and as a result we have

εi ∼ N (0, σ 2 × DMLi ) i = 1, . . . , 768 (4.2)
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Such a variance structure allows for larger residual spread if DML increases. And
the good news is that there are no extra parameters involved! Technically, this model
is fitted using the generalised least squares (GLS) method, and the technical aspects
of this method are discussed later in this chapter. To fit a GLS in R, the function gls
from the nlme package can be used. The variance structure (and any of the others
we discuss later) can be selected by specifying the weights arguments in the gls
function. In fact, running the gls code without a weights option, gives you the
same linear regression model already seen in Equation (4.1). The following R code
applies the linear regression model in (4.1) and also the GLS with the fixed variance
structure in Equation (4.2). The reason we refitted the linear regression model in
Equation (4.1) with the gls function was to avoid a warning message in the anova
comparison.

> library(nlme)
> M.lm <- gls(Testisweight ∼ DML * fMONTH, data=Squid)
> vf1Fixed <- varFixed(∼DML)
> M.gls1 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf1Fixed, data = Squid)
> anova(M.lm, M.gls1)

The command varFixed (∼DML) ensures a variance that is proportional to
DML, and it needs to be specified via the weights argument in the gls function.
Finally, the anova command gives

Model df AIC BIC logLik

M.lm 1 25 3752.084 3867.385 -1851.042

M.gls1 2 25 3620.898 3736.199 -1785.449

The models are not nested; so no log-likelihood ratio test statistic is given, but the
AIC clearly favours the model with the fixed variance in Equation (4.2). Note that
both models have the same number of parameters! You can also use the command
AIC(M.lm, M.gls1).

4.1.3 The VarIdent Variance Structure

Now, just for a moment, we will forget about the residual spread increasing for larger
DML values. So instead of recognising from Fig. 4.2C that the spread increases for
larger DML values, we now realise from Fig. 4.2B that the spread also differs per
month. To incorporate this pattern into the model, it is better to slightly change the
indices used in the model notation:

Testisweightij = intercept + DMLij + Month j + DMLij:Month j + residualsij (4.3)

Testisweightij is the testis weight of the ith observation in month j. This is exactly
the same model as in Equation (4.1); we have only changed notation of the indices.
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However, the new notation makes it easier to formulate the variance structure with
different spread per stratum:

εi j ∼ N (0, σ 2
j ) j = 1, . . . , 12 (4.4)

So, we now have var(εij) = σ j
2, and each month is allowed to have a different

variance. The following code implements different variances per stratum for month
and applies the anova comparison.

> vf2 <- varIdent(form= ∼ 1 | fMONTH)

> M.gls2 <- gls(Testisweight ∼ DML*fMONTH, data =Squid,
weights = vf2)

> anova(M.lm, M.gls1, M.gls2)

The output of the anova command is given by:

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls1 2 25 3620.898 3736.199 -1785.449
M.gls2 3 36 3614.436 3780.469 -1771.218 2 vs 3 28.46161 0.0027

We have decreased the font size of the numerical output to ensure it fits the
page. The first two lines in the output are the same as above. The AIC of the model
using the different variances per month is lower. You can also use the command
AIC(M.lm, M.gls1, M.gls2).

Notice that due to the variance structure in Equation (4.4), we now have to esti-
mate 11 more parameters. We discuss below why it is not 12. We also get a log likeli-
hood ratio comparing the variance structures in Equations (4.2) and (4.4). However,
as these models are not nested, it is better not to use the log likelihood ratio. How-
ever, comparing models (4.1) and (4.4) does make sense as they are both nested.
The null-hypothesis is

H0 : σ 2
1 = σ 2

2 = σ 2
3 = . . . = σ 2

12

with the alternative that they are not equal to each other. The R code to carry out
this test and the resulting output is given below.

> anova(M.lm, M.gls2)

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls2 2 36 3614.436 3780.469 -1771.218 1 vs 2 159.6479 <.0001

You can see the log likelihood ratio test indicates that the model with differ-
ent variances per month is better, allowing us to reject the null hypothesis that all
variances are the same. The summary(M.gls2) command gives the different
variances (along with lots of other information).
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> summary(M.gls2)

...

Variance function:

Structure: Different standard deviations per stratum

Formula: ∼1 | fMONTH

Parameter estimates:

2 9 12 11 8 10 5 7 6 4

1.00 2.99 1.27 1.50 0.98 2.21 1.63 1.37 1.64 1.42

1 3

1.95 1.97

...

Residual standard error: 1.27

The numbers under the months (2, 9, 12, etc.) are multiplication factors. They
show the ratio with the estimated residual standard error (1.27), the estimator for σ .
Let us call this estimator s; hence, s = 1.27. One multiplication factor is set to 1 (in
this case month 2). In month 9, the variance is 2.99 × s, in month 12 it is 1.27 ×
s, etc. You can also change the nominal variable fMONTH and set January to the
baseline. Note that months 9 and 10, and 3 have the highest ratios indicating that in
these months there is more residual variation.

If you have two nominal explanatory variables, say month and location, and the
spread differs for all stratum, then you can use varIdent(form= ∼ 1|fMONTH
* factor(LOCATION)). But we don’t have location information for the squid
data.

So, which option is better: different spread per month or different spread along
DML? If in Fig. 4.2A, the smaller fitted values are from months with less spread
and the larger fitted values are from months with higher spread, then using different
variances per month makes more sense. The following code produces a graph like
Fig. 4.2A and colours observations of the same month:

> plot(M.lm,which = c(1), col = Squid$MONTH,

add.smooth = FALSE, caption = "")

The col = Squid$MONTH part ensures that observations of the same month
have the same colour. This approach works here because MONTH is coded with
values 1–12. If you coded it as ‘January’, ’February’, etc. then you would need to
make a new vector with values 1, 2, 3, etc.; see, for example, Dalgaard (2002) on
how to do this. Although not presented here, the graph does not show any clear
grouping.

Let us try to understand what is really going on. The R code below makes
a coplot (explained in Chapter 2) of the residuals versus DML, conditional on
month for the linear regression model in Equation (4.1). The resulting coplot
is given in Fig. 4.3. The residual variation differs per month, but in some
months (e.g. 3, 9, and 10) the residual spread also increases for larger DML val-
ues. So, both are influential: residual spread is influenced by both month and
length!
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Fig. 4.3 Coplot of residuals obtained by the linear regression model in Equation (4.1) versus DML
conditional on month. The lower left panel corresponds to month 1, the lower right to month 4, and
the upper right to month 12. Note that some months show clear heterogeneity, and others do not.
Sample size may also be an issue here!

> E <- resid(M.lm)

> coplot(E ∼ DML | fMONTH, data = Squid)

Before discussing how to combine both types of variation (variation linked with
DML and variation linked with Month), we introduce a few more variance struc-
tures. In all these structures, the variance of the residuals is not necessarily equal to
σ 2, but is a function of DML and/or month.

An explanatory variable that is used in the variance of the residuals is called a
variance covariate. The trick is to find the appropriate structure for the variance
of εij. The easiest approach to choosing the best variance structure is to apply the
various available structures in R and compare them using the AIC or to use biolog-
ical knowledge combined with some informative graphs like the coplot. Some of
the variance functions are nested, and a likelihood ratio test can be applied to judge
which one performs better for your data.

4.1.4 The varPower Variance Structure

So far, we have looked at the varFixed and varIdent variance structures.
Next we look at the ‘power of the covariate’ variance structure. It uses the R
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function varPower. For the squid data, a potential power of the covariate variance
structure is

εi j ∼ N (0, σ 2 × |DMLij |2δ) (4.5)

Hence, var(εij) = σ 2 × |DMLij|2δ . The variance of the residuals is modelled as
σ 2, multiplied with the power of the absolute value of the variance covariate DML.
The parameter δ is unknown and needs to be estimated. If δ = 0, we obtain the
linear regression model in Equation (4.1), meaning (4.1) and (4.5) are nested, and
therefore the likelihood ratio test can be applied to judge which one is better. For
δ = 0.5 and a variance covariate with positive values, we get the same variance
structure as specified in Equation (4.2). But if the variance covariate has values
equal to 0, the variance of the residuals is 0 as well. This causes problems in the
numerical estimation process, and if the variance covariate has values equal to zero,
the varPower should not be used. For the squid data, all DML values are larger
than 0 (DML is length); so it is not a problem with this example. The following R
code implements the varPower function.

> vf3 <- varPower(form =∼ DML)

> M.gls3 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf3, data = Squid)

The AIC of this model is 3473.019, which is the lowest value so far (the lower
the AIC the better the model). The summary command gives the value of δ = 1.75.
It is also possible to allow multiple variables in the form argument. This extension
makes it possible to model an increase in spread for larger DML values, but only in
certain months! The structure for the residuals is now

εi j ∼ N (0, σ 2 × |DMLij |2δ) (4.6)

Hence, var(εij) = σ 2 × |DMLij|2δj. The following R code implements this vari-
ance structure.

> vf4 <- varPower(form =∼ DML | fMONTH)

> M.gls4 <- gls(Testisweight ∼ DML * fMONTH,

data = Squid, weights = vf4)

The anova command gives an AIC of 3407.51, now making it the best model
so far. The parameters δj can be obtained using the summary command, and are

Variance function:
Structure: Power of variance covariate, dif-ferent strata
Formula: ∼DML | factor(MONTH)
Parameter estimates:

2 9 12 11 8 10 5 7 6
1.73 1.79 1.73 1.75 1.62 1.79 1.75 1.67 1.75
4 1 3
1.71 1.70 1.72
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So, instead of having one δ, we now have twelve of them (δj, j = 1, . . ., 12).
There is little variation between the estimated values of δj, but keep in mind they
are multiplied by two, before being used to take the power. It is also possible to set
the δj for some months equal to an a priori chosen value and keep it fixed. This is
handy if you know or want to test whether the spread along DML in some months is
constant (e.g. in month 4, as suggested by the coplot in Fig. 4.3). This can be done
with the fixed option in varPower (see page 210 in Pinheiro and Bates (2000)
and the help file of varPower). The AIC can be used to judge whether fixing or
not fixing is better.

4.1.5 The varExp Variance Structure

If the variance covariate can take the value of zero, the exponential variance structure
is a better option. It uses the varExp function in R, and for the squid data, a possible
exponential variance structure is

var(εi j ) = σ 2 × e2δ×DMLi (4.7)

This structure models the variance of the residuals as σ2 multiplied by an expo-
nential function of the variance covariate DML and an unknown parameter δ. If δ =
0, this gives the variance structure of model (4.1). There are no restrictions on δ or
DML. This structure also allows a decrease of spread for DML values if δ is neg-
ative. As before, we can allow for different δ per month. The R code to implement
the exponential variance structure is

> vf5 <- varExp(form =∼ DML)

> M.gls5 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf5, data = Squid)

The AIC of this model is 3478.15, which is slightly higher than for model
M.gls3. Using varExp(form =∼ DML | fMONTH) does the same trick as for
model M.gls4, and allows the spread in DML to differ per month. Again, it is
possible to fix some of the δjs.

4.1.6 The varConstPower Variance Structure

Another variance structure is the constant plus power of the variance covari-
ate function, and it is implemented in the function varConstPower. It is
defined by

var(εi j ) = σ 2 × (δ1 + |DMLij |δ2 )2 (4.8)
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This function looks rather complicated. If δ1 = 1 and δ2 = 0, we are back to the
linear regression model in Equation (4.1). If not, then the variance is proportional to
a constant plus the power of the variance covariate DML. According to Pinheiro and
Bates (2000), this variance structure works better than the varExp if the variance
covariate has values close to zero. To use this variance structure in R, use

> vf6 <- varConstPower(form =∼ DML)

> M.gls6 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf6, data = Squid)

Its AIC is 3475.02. Again, we can allow for different δ1s and δ2s per stratum of
a nominal variable (e.g. MONTH). Such a model is fitted in R by

> vf7 <- varConstPower(form =∼ DML | fMONTH)

> M.gls7 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf7, data = Squid)

The AIC of this model is 3431.51. The associated variance structure is given by

var(εi j ) = σ 2 × (δ1 j + |DMLij |δ2 j )2 (4.9)

The only difference with the variance in Equation (4.8) is the index j ( j = 1, . . .,
12) from δ1 and δ2. Again, it is possible to set the δ1s and δ2s to a preset value for
particular months and keep it fixed during the estimation process.

4.1.7 The varComb Variance Structure

The last variance structure we discuss is the combination of variance structures
using the varComb function. With this variance structure, we can allow for both an
increase in residual spread for larger DML values as well as a different spread per
month. This variance structure is of the form:

var(εi j ) = σ 2
j × e2δ×DMLij (4.10)

Note that σ has an index j running from 1 to 12, allowing for different spreads per
month. Additionally, the variance increases for larger DML values. This is a com-
bination of varIdent and varExp. The following R code applies this variance
structure and gives the AIC of all models applied so far.

> vf8 <- varComb(varIdent(form =∼ 1 | fMONTH) ,

varExp(form =∼ DML) )

> M.gls8 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf8, data = Squid)
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> anova(M.lm, M.gls1, M.gls2, M.gls3, M.gls4,
M.gls5, M.gls6, M.gls7, M.gls8)

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls1 2 25 3620.898 3736.199 -1785.449
M.gls2 3 36 3614.436 3780.469 -1771.218 2 vs 3 28.461 0.0027
M.gls3 4 26 3473.019 3592.932 -1710.509 3 vs 4 121.417 <.0001
M.gls4 5 37 3407.511 3578.156 -1666.755 4 vs 5 87.507 <.0001
M.gls5 6 26 3478.152 3598.066 -1713.076 5 vs 6 92.641 <.0001
M.gls6 7 27 3475.019 3599.544 -1710.509 6 vs 7 5.133 0.0235
M.gls7 8 49 3431.511 3657.501 -1666.755 7 vs 8 87.507 <.0001
M.gls8 9 37 3414.817 3585.463 -1670.409 8 vs 9 7.306 0.8367

The model allowing for an increase in spread for larger DML values (which
is allowed to differ per month), M.gls4, has the lowest AIC and is therefore
selected as the optimal model. Note that the tests above depend on the order
in the anova command. If you are only after the AIC, you better use the
command:

> AIC(M.lm, M.gls1, M.gls2, M.gls3, M.gls4,

M.gls5, M.gls6, M.gls7, M.gls8)

This command only gives the AICs of the models. The anova (M.gls4) com-
mand shows that the interaction is highly significant. Testing fixed terms in the
model is further discussed in Section 4.2.

4.1.8 Overview of All Variance Structures

Table 4.1 shows all the applied variance structures and their names. As well as these
functions, you can also specify your own variance structure; see pg. 214 in Pinheiro
and Bates (2000). Instead of using a covariate in the variance structure, we can use
the fitted values of the model, which allows the spread in residuals to increase (or
decrease) for larger fitted values.

Table 4.1 Various
variance structures used in
this section. The table
follows Pinheiro and Bates
(2000)

Name of the
function in R What does it do?

VarFixed Fixed variance
VarIdent Different variances per stratum
VarPower Power of the variance covariate
VarExp Exponential of the variance covariate
VarConstPower Constant plus power of the variance

covariate
VarComb A combination of variance functions
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If the variance covariate has large values (e.g. larger than 100), numerical insta-
bilities may occur; exp(100) is rather large! In such cases, it is better to rescale the
variance covariate before using it in any of the variance structures. For example, we
could have used DML/max(DML) or express it in meters instead of millimetres in
the variance functions. The unscaled DML can still be used in the fixed part of the
model.

Remember from Appendix A, that two models are called nested if one model
can be obtained from the other model by setting specific parameters equal to zero.
The same definition also applies to variance structures. For example, the variance
structure of the linear regression model in Equation (4.1) is nested within most of
the other models. However, one of the exceptions is the linear regression model and
the varFixed structure.

In this case, we cannot obtain the homogeneous residual variance from the linear
regression model by setting a specific parameter in the varFixed model equal to
zero. To see this, compare the following two variance structures:

εi ∼ N (0, σ 2) εi ∼ N (0, σ 2 × DMLi )

The first variance structure is from the linear regression model and the second
one from the varFixed. We cannot obtain the variance structure on the left from
the right one, unless DML is equal to 1 for all observations. Compare this with the
linear regression model and the varPower structure:

εi ∼ N (0, σ 2) εij ∼ N (0, σ 2 ×|DMLij|2δ j )

By setting all δjs equal to zero in the right variance structure, we obtain the
left variance structure; hence, these are nested variance structures. Note that the
varIdent is nested in the varPower structure! And nested models mean that
we can apply the likelihood ratio test.

To test certain types of heterogeneity, we can apply the log likelihood ratio test.
For example, for model (4.1) and the optimal variance structure in (4.6), we can type
anova (M.lm, M.gls4), which gives:

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls4 2 37 3407.511 3578.156 -1666.755 1 vs 2 368.5728 <.0001

The log likelihood ratio statistic is 368.57, indicating that the variance structure
in (4.6) is considerably better than the constant variance in the linear regression
model (4.1). Hence, the varPower option provides a significantly better variance
structure than the one used for the linear regression model in (4.1). In a paper,
you would write this as L = 368.57 (df = 12, p < 0.001). This model compar-
ison provides a better testing procedure for homogeneity than those presented in
Chapter 2.
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4.1.8.1 Which One to Choose?

So, which variance structure should you choose, and how do you decide which one
is best? If the variance covariate is a nominal variable, the choice is simple; use
varIdent. In our example, it allowed modelling different residual variation for
the testis weight per month.

The underlying variance structure imposed by varIdent is relatively easy to
understand, but the difference between the variance structured modelled by the
varFixed, varPower, varExp, and varConstPower functions are more dif-
ficult to explain. All four variance structures allow for an increase (or decrease) in
residual variation for the testis weight data along a continuous variance covariate
like DML (an explanatory variable in this case).

But, the varFixed is rather limited, as it assumes that the variance of the resid-
uals is linearly related to a variance covariate. This causes problems if the variance
covariate takes non-positive values or where the linear relationship requirements
between variation and the variance covariate is too stringent.

In practise, it may be better to use the varPower, varExp, or
varConstPower functions, which allow for more flexibility than the varFixed.
So, how to choose between these three? The difference between them is the math-
ematical parameterisation of the variance function. The varPower should not be
used if the variance covariate takes the value of zero. In this case, this is not an issue
as DML (length) is always larger than zero. But it may be an issue with variance
covariates like temperature or height compared to a baseline, etc.

However, finding the right variance structure for a variance covariate like DML,
which is always non-zero, is more a matter of trial and error, and the best choice
is judged through using tools like the AIC. Another important aspect is biological
knowledge. If you know a priori that there is a certain type of heterogeneity in
your data, then you can greatly speed up the selection process by including this
information!

4.1.9 Graphical Validation of the Optimal Model

For graphical model validation, we can use two types of residuals: (i) residu-
als calculated as observed minus fitted values (also called ordinary residuals) and
(ii) normalised residuals. We start with the first one. The following R code extracts
the residuals and plots them in a coplot (Fig. 4.4). Note that these residuals still
show heterogeneity, but this is now allowed (because the residual variation differs
depending on the chosen variance structure and values of the variance covariate).
Hence, these residuals are less useful for the model validation process.

> E1 <- resid(M.gls4)

> coplot(E1 ∼ DML | fMONTH,

ylab = "Ordinary residuals", data = Squid)
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Fig. 4.4 Ordinary residuals (observed minus fitted values) versus DML conditional on month for
the optimal model. These residuals are allowed to have a cone effect

You should use standardised residuals instead of the ordinary residuals for the
model validation. These are obtained by calculating the observed minus the fitted
values and then dividing by the square root of the variance. These residuals are
therefore obtained from

εi j =
Testisweightij − Fitted valuesij√

σ 2 × |DMLij |2δ j
(4.11)

Plotting these residuals should not show any heterogeneity. If there is any het-
erogeneity, then further model improvement is required. Luckily, we don’t have to
program Equation (4.11) as the standardised residuals can be obtained using an R
function.

The following R code extracts the standardised residuals, and makes a coplot,
(Fig. 4.5) where there is no clear evidence of heterogeneity.

> E2 <- resid(M.gls4, type = "normalized")

> coplot(E2 ∼ DML | fMONTH, data = Squid,

ylab = "Normalised residuals")
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Fig. 4.5 Coplot of standardised residuals versus DML conditional on month for the optimal model.
There is no evidence of heterogeneity

The option type = "normalized" ensures that E2 contains the standard-
ised residuals.

4.2 Benthic Biodiversity Experiment

4.2.1 Linear Regression Applied on the Benthic Biodiversity Data

In this section, we provide another example of a linear regression model for statisti-
cally heterogeneous data. Based on experimental protocols developed in Emmerson
and Raffaelli (2000), Emmerson et al. (2001), Solan and Ford (2003), and Ieno
et al. (2006), among others, replicate mesocosm experiments (using plastic ice
containers) were carried out. Benthic macrofaunal single and/or multiple species
(biodiversity) were manipulated in a multi-patch environment, and the release of
ammonium (NH4-N), nitrate (NOx-N) and phosphate (PO4-P) concentrates were
recorded from the sediment (ecosystem processes).

The data used for the specific example shown below relies on both published data
(Ieno et al., 2006) and unpublished data (Oceanlab, University of Aberdeen). The
experiment examines the effect of macrofauna density (Hediste diversicolor, Poly-
chaeta), and habitat heterogeneity on sediment nutrient release. Figure 4.6 shows
the experimental set up.
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Fig. 4.6 Photograph showing the experimental set up. One nutrient is measured per container

At the start of the experiment, each container was filled with homogenised sedi-
ment from mudflats on the Ythan estuary (Scotland, UK). The macrofaunal biomass
(H. diversicolor) was fixed across the following levels (0, 0.5, 1, 1.5, and 2 g), and
replicated within each biomass level (n = 3). The response variable is the concen-
tration of a particular nutrient.

To study the effect of habitat heterogeneity, the previous procedure was repeated
for algae-enriched sediment. This gave 36 observations per nutrient, 18 enriched,
and 18 non-enriched. Because there are three nutrients, the data set contains 108
samples (containers).

We can either analyse the data for each nutrient separately or combine all the
data and analyse it all at the same time. The latter option is applied here as it allows
us to test for interactions between nutrients and treatment levels (note that the nutri-
ents were not measured in the same container; so there are no pseudo-replication
problems).

To analyse the concentration data from all three nutrients, we need to concatenate
the 36 observations from each nutrient, resulting in a response variable of length 108
(36 × 3), one continuous explanatory variable (biomass), and two nominal explana-
tory variables: enrichment (with or without algae), and a variable identifying the
nutrient with the levels NH4-N, NO3-N, and PO3-P.

There is, however, a major problem with the statistical analysis of the combined
data. Due to the nature of the variables, we expect massive differences in variation
in concentrations per nutrient and enrichment combination. This is illustrated in
Fig. 4.7, which shows a boxplot for each nutrient–enrichment combination. Note
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Fig. 4.7 Boxplot of concentrations for NH4, NO3 and PO3. The first two boxplots on the left hand
side are for enriched and non-enriched NH4 concentrations

that the samples enriched with algae and with NH4, have higher concentrations and
show more variation.

An initial linear regression analysis, using biomass, enrichment and nutrient, with
all the two-way interactions, and the three-way interaction as explanatory variables
clearly showed serious violation of homogeneity, as can be seen from Fig. 4.8.

A log10(Concentration + 0.5) transformation was applied, but the enrichment ×
NO3 combination still had lower variation than the other combinations. We, there-
fore, cannot easily obtain homogeneity with a data transformation. And, as we men-
tioned in Chapter 2, we want to avoid data transformations whenever possible. So,
instead of transforming the data, we will allow for different variances by using GLS.
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The following R code was used to make Figs. 4.7 and 4.8.

> library(AED); data(Biodiversity);

> Biodiv <- Biodiversity #Saves some space

> Biodiv$fTreatment <- factor(Biodiv$Treatment)

> Biodiv$fNutrient <- factor(Biodiv$Nutrient)

> boxplot(Concentration ∼
fTreatment * fNutrient, data = Biodiv)

> M0 <- lm(Concentration ∼
Biomass * fTreatment * fNutrient,

data = Biodiv)

> plot(M0, which = c(1), add.smooth = FALSE)

The library and data commands are used to load the data. The variables
Treatment and Nutrient are converted into factors, and the rest is basic code for a
boxplot (Chapter 2) and linear regression (Appendix A).

4.2.2 GLS Applied on the Benthic Biodiversity Data

As with the squid data, we have to investigate why there is heterogeneity in these
benthos data. Biological knowledge suggests that treatment and nutrient levels, pos-
sibly both, may be driving the heterogeneity. A scatterplot of biomass versus con-
centration did not show any clear increase or decrease in spread. This indicates that
the potential variance covariates are nutrient and/or enrichment. The following R
code assumes you have already loaded the data. It first applies the linear regression
model again with the gls command, and then the three GLS models with different
variance covariates are fitted.

> library(nlme)

> f1 <- formula(Concentration ∼ Biomass * fTreatment *
fNutrient)

> M0 <- gls(f1, data = Biodiv)

> M1A <-gls(f1, data = Biodiv, weights = varIdent(

form =∼ 1 | fTreatment * fNutrient))

> M1B <-gls(f1, data = Biodiv,

weights = varIdent(form =∼ 1 | fNutrient))

> M1C <-gls(f1, data = Biodiv,

weights = varIdent(form =∼ 1 | fTreatment))

The first model M0 is the linear regression model without any variance covari-
ates. The second model M1A uses one variance term per nutrient–enrichment com-
bination. And the third and fourth models use as variance covariates, nutrient and
enrichment, respectively. The models have all main terms, two-way interactions,
and the three-way interaction term as a fixed component. The anova command can
be used to compare the models.
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> anova(M0, M1A, M1B, M1C)

Model df AIC BIC logLik Test L.Ratio p-value
M0 1 13 534.5203 567.8569 -254.2602
M1A 2 18 330.1298 376.2881 -147.0649 1 vs 2 214.39054 <.0001
M1B 3 15 380.0830 418.5482 -175.0415 2 vs 3 55.95320 <.0001
M1C 4 14 439.7639 475.6647 -205.8819 3 vs 4 61.68087 <.0001

The AIC of the model with both nutrient and enrichment as variance covariates
(M1A) is by far the best model, as judged by the AIC and BIC. Note that not all the
likelihood ratio tests make sense (not all comparisons are from nested models). The
plot(M1A, col = 1) command plots the standardised residuals versus fitted
values. The graph is not shown here, but there is no sign of heterogeneity.

The commands anova(M1A) and summary(M1A) give information of the
significance of the fixed explanatory variables (the three-way interaction, etc.).
Results are not given here, but both functions show that the three-way interaction is
not significant.

4.2.3 A Protocol

The problem is that we have still not discussed all aspects of model selection.
This requires knowledge of things like maximum likelihood (ML) estimation and
restricted maximum likelihood estimation (REML), and we discuss these in more
detail in the next chapter. For the moment, we present them in a rather abstract
manner and justify them later in Chapter 5. So to fully understand the differences
between ML and REML, you need to read Chapter 5. In Chapter 5, the protocol
for model selection in mixed modelling is explained (and justified) in detail, but the
same protocol applies for GLS and is introduced in less detail below.

1. Start with a linear regression model that contains as many explanatory vari-
ables and their interactions as possible. The residuals of this model are assumed
to be normally distributed with mean 0 and variance σ 2. Investigate whether
the homogeneity assumptions are valid by plotting the standardised residuals
versus fitted values and by plotting the standardised residuals versus each indi-
vidual explanatory variable. Any sign of variation in residual patterns is an indi-
cation of heterogeneity and means you have to go on to step 2. If you do not see
any clear violation of homogeneity, there is no need to continue to step 2; just
continue with a model selection on the explanatory variables (Appendix A). It
should be noted that the graphical assessment of heterogeneity is difficult for
small data sets.

2. For formal model comparison, repeat step 1 using the gls function from the
nlme package. Do not specify any special variance structure yet and ensure that
REML estimation is used (the default estimation method). You will get exactly
the same estimated values, t-values and p-values as in step 1. The reason for



4.2 Benthic Biodiversity Experiment 91

this step is that the anova command cannot compare objects obtained by the
functions lm and gls. A call to the gls function without any extra options is
a linear regression.

3. Depending on the graphical model validation in step 1, choose an appropriate
variance structure. It helps to plot residuals versus fitted values and use different
colours and symbols for different nutrients and/or enrichment levels (for our
particular example). In the previous section, a wide range of residual variance
structures was introduced.

4. Fit a new gls model with the selected variance covariance structure selected
in step 3. Ensure that REML estimation is used, which is done with gls(. . .,
method = "REML"), and that you use the same selection of explanatory
variables. This is now called the fixed part of the model, and the residuals are
called the random part. We will first try to find the optimal random structure
using as many explanatory variables in the fixed part as possible.

5. Compare the new GLS model with the earlier results using the AIC, BIC, or
likelihood ratio test. If the new model is better, extract the normalised resid-
uals, and inspect these for homogeneity (using the same tools as in step 1).
If the homogeneity assumption is not valid for the normalised residual of
the model obtained in step 4, then go to step 6. If it is valid, then go to
step 7.

6. If the residuals still show heterogeneity, go to step 4, and choose another resid-
ual variance structure. If you keep iterating between steps 4, 5, and 6, either
try improving the fixed component (using for example additive modelling), try
a different distribution (e.g. Poisson or negative binomial), consider a transfor-
mation on the response variable as a last resort, or conclude that your residual
spread is not related to any of the measured covariates.

7. You are now half way. You have found the optimal residual variance struc-
ture using REML estimation. Now it is time to find the optimal fixed com-
ponent. Or stated differently, which explanatory variables are significant, and
which are not. You have three tools to find the optimal fixed component: the t-
statistic, the F-statistic, and the likelihood ratio test. The t-statistics are obtained
with the summary command, and the F-statistic with the anova command.
Both functions are applied on one model, e.g. by typing summary(M1A) or
anova(M1A). Ensure that REML estimation is used in the gls command.
Remember the anova command is doing sequential testing. This is useful for
testing the significance of the highest interaction term, but not for the other
terms in the model. It is also of less use if you only have main terms as the
order of the variables is of importance in sequential testing. The problem with
the t-statistic is that it should not be used to assess the significance of a nominal
variable with more than two levels (e.g. nutrient). The third option is the likeli-
hood ratio test. You need to specify a full model and a nested model (Appendix
A). Both models need ML estimation (and the same random structure, but you
already selected these in step 5). This approach is conceptually probably the
easiest to work with, but it can be time consuming.



92 4 Dealing with Heterogeneity

8. Apply any of the model selection tools described in step 7, and stop once all
terms are significant.

9. Reapply the model that was found in step 8, and refit it with REML estimation.
Apply a graphical model validation, checking for homogeneity (see step 1),
normality, and independence. If no problems are highlighted, go to step 10. If
problems are identified, return to step 8, and consider adding non-significant
terms to see if this improves the model validation graphs.

10. Present the results in a table and try to understand what it all means in terms of
ecology.

We demonstrated steps 1–7 for the benthic biodiversity data earlier in this chapter
and now continue with this example for the remaining steps in the protocol just
described.

4.2.4 Application of the Protocol on the Benthic Biodiversity Data

The anova(M1A) command gives the following output.

Denom. DF: 96

numDF F-value p-value

(Intercept) 1 205.73781 <.0001

Biomass 1 1.22179 0.2718

fTreatment 1 14.62895 0.0002

fNutrient 2 1.57754 0.2118

Biomass:fTreatment 1 0.26657 0.6068

Biomass:fNutrient 2 4.17802 0.0182

fTreatment:fNutrient 2 121.57149 <.0001

Biomass:fTreatment:fNutrient 2 1.09043 0.3402

An explanation of the nominator and denominator degrees of freedom is delayed
until Chapter 5. Here, we focus on the value of the F-statistic and its p-value. The
anova function applies sequential testing. This means that the p-values will change
if you change the order of the main terms or the order of the two-way interactions. In
this example, it is only the last term that is of real interest as it shows the significance
of the three-way interaction term (you can’t change the order of this term). In this
case, it is not significant at the 5% level. This means that we can drop the three-way
term and refit the model.

Refitting the model with the main terms and all three two-way terms gives exactly
the same anova table as above, except for the last line. The problem is that we
cannot assess the significance of the Biomass × Treatment term, and the biomass ×
Nutrient term, due to the order how they were put in. Obviously, we could apply
three models, ensure each time that a different two-way term is the last, and deselect
the least significant two-way interaction.
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The second model selection approach (using hypothesis testing) is based on
the t-statistic, but we do not want to use this option as nutrient has three lev-
els. One level will be used as baseline, and the p-values from the t-statistic will
only tell us whether the second and third nutrients are different from the baseline
nutrient.

The third model selection approach (using hypothesis testing) is based on
comparing nested models. Let us go back a step and test the significance of the
three-way interaction term again. We compare the full model (with the three-way
interaction term) with a model that does not contain the three-way interaction term
using the likelihood ratio test. Both models need ML estimation. The R code for
this is as follows.

> M2A1 <- gls(Concentration ∼ Biomass + fTreatment +
fNutrient +
Biomass:fTreatment +
Biomass:fNutrient +
fTreatment:fNutrient +
Biomass:fTreatment:fNutrient,
weights = varIdent(form =∼ 1 |

fTreatment * fNutrient),
method = "ML", data = Biodiv)

> M2A2 <- gls(Concentration ∼ Biomass + fTreatment +
Nutrient +
Biomass:fTreatment +
Biomass:fNutrient +
fTreatment:fNutrient,
weights=varIdent(form =∼ 1 |

fTreatment * fNutrient),
method = "ML", data = Biodiv)

The output of the anova (M2A1, M2A2) command is given below.

Model df AIC BIC logLik Test L.Ratio p-value
M2A1 1 18 321.0648 369.3432 -142.5324
M2A2 2 16 319.4653 362.3794 -143.7327 1 vs 2 2.400507 0.3011

The anova command also indicates that the three-way interaction can be
dropped. In the next step of the model selection, we have to find a p-value for each
two-way interaction. This is done as follows. Use model M2A2 as the starting point
and drop each of the two-way interactions in turn, and use the anova command
to obtain a p-value. Also consider whether any of the main terms can be dropped.
The rule is that if an interaction term is included, then all the associated main terms
should be included as well, and are not a candidate for dropping. However, if you
have the main terms A, B, C, and the interaction A × B, then the two terms that can
be potentially dropped are A × B and also C!

This whole process is rather time consuming and you will want to think twice
before adding four-way interactions! It was our intention to put the code for this
example online, but all our book reviewers asked us to include it in the text of the
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book. Perhaps they are right, and you should see this at least once in your life. So,
take a deep breath, and read on!

4.2.4.1 Round 1 of the Backwards Selection

The following code drops each two-way interaction and applies a likelihood ratio
test.

> vfOptim <- varIdent(form =∼ 1 | fTreatment*fNutrient)
> #Assess significance of all 3 2-way interactions
> #Full model
> M3.Full <- gls(Concentration ∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
Biomass:fNutrient +
fTreatment:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)

> #Drop Biomass:fTreatment
> M3.Drop1 <- gls(Concentration∼

Biomass + fTreatment + fNutrient +
Biomass:fNutrient +
fTreatment:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)

> anova(M3.Full, M3.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop1 2 15 319.3730 359.6050 -144.6865 1 vs 2 1.907680 0.1672

>
> #Drop Biomass:fNutrient
> M3.Drop2 <- gls(Concentration ∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
fTreatment:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)

> anova(M3.Full, M3.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop2 2 14 323.2165 360.7664 -147.6083 1 vs 2 7.751179 0.0207

>
> #Drop fTreatment:fNutrient
> M3.Drop3 <- gls(Concentration ∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
Biomass:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)
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> anova(M3.Full, M3.Drop3)
Model df AIC BIC logLik Test L.Ratio p-value

M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop3 2 14 403.3288 440.8786 -187.6644 1 vs 2 87.86346 <.0001

So, we dropped each two-way interaction term in turn, applied the likeli-
hood ratio test, and obtained p-values. Clearly, the two way interaction term
Biomass:fTreatment is not significant at the 5% level and should be dropped.
You can make the code above a bit friendlier using the update command. The
following code produces exactly the same results.

> #Alternative coding with same results
> fFull <- formula(Concentration∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
Biomass:fNutrient + fTreatment:fNutrient)

> M3.Full <- gls(fFull, weights = vfOptim,
method = "ML", data = Biodiv)

> #Drop Biomass:fTreatment
> M3.Drop1<-update(M3.Full, .∼. - Biomass:fTreatment)
> anova(M3.Full, M3.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop1 2 15 319.3730 359.6050 -144.6865 1 vs 2 1.907680 0.1672

> #Drop Biomass:fNutrient
> M3.Drop2 <- update(M3.Full, .∼. - Biomass:fNutrient)
> anova(M3.Full, M3.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop2 2 14 323.2165 360.7664 -147.6083 1 vs 2 7.751179 0.0207

> #Drop fTreatment:fNutrient
> M3.Drop3<-update(M3.Full, .∼. - fTreatment:fNutrient)
> anova(M3.Full,M3.Drop3)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop3 2 14 403.3288 440.8786 -187.6644 1 vs 2 87.86346 <.0001

As you can see, this gives the same results. The advantage of the update com-
mand is that the code is shorter, but you it also makes it easier to lose track what
exactly you are fitting.

4.2.4.2 Round 2 of the Backwards Selection

Whichever coding you use, we need to drop the term Biomass:fTreatment.
This means that the new full model is

> #New full model

> M4.Full <- gls(Concentration∼
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Biomass + fTreatment + fNutrient +

Biomass:fNutrient + fTreatment:fNutrient,

weights = vfOptim,

method = "ML", data = Biodiv)

From this model, you can drop two of the two-way interaction terms. No main
terms can be dropped yet. We will use the update command again and try to avoid
turning this chapter into something that looks like a telephone book.

>#Drop Biomass:fNutrient
> M4.Drop1 <- update(M4.Full, .∼. -Biomass:fNutrient)
> anova(M4.Full, M4.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M4.Full 1 15 319.3730 359.6050 -144.6865
M4.Drop1 2 13 321.7872 356.6549 -147.8936 1 vs 2 6.414148 0.0405

> #Drop fTreatment:fNutrient
> M4.Drop2<-update(M4.Full, .∼. -fTreatment:fNutrient)
> anova(M4.Full, M4.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M4.Full 1 15 319.3730 359.6050 -144.6865
M4.Drop2 2 13 404.8657 439.7335 -189.4329 1 vs 2 89.49272 <.0001

A p-value of 0.04 for the Biomass:fNutrient interaction is not impressive,
especially not with a series of hypothesis tests. So, we decided to drop it as well and
continue with the following full model.

4.2.4.3 Round 3 of the Backwards Selection

The new full model is

> #New full model

> M5.Full <- gls(Concentration ∼
Biomass + fTreatment + fNutrient +

fTreatment:fNutrient,

weights = vfOptim, method = "ML",

data = Biodiv)

We can drop the fTreatment:fNutrient interaction term, but also the
main term Biomass.

> #Drop fTreatment:fNutrient
> M5.Drop1 <-update(M5.Full, .∼.-fTreatment:fNutrient)
> anova(M5.Full, M5.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M5.Full 1 13 321.7872 356.6549 -147.8936
M5.Drop1 2 11 406.7950 436.2985 -192.3975 1 vs 2 89.00786 <.0001
> #Drop Biomass
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> M5.Drop2 <- update(M5.Full, .∼. -Biomass)
> anova(M5.Full, M5.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M5.Full 1 13 321.7872 356.6549 -147.8936
M5.Drop2 2 12 321.2595 353.4450 -148.6297 1 vs 2 1.472279 0.225

The biomass term is not significant and can be dropped.

4.2.4.4 Round 4 of the Backwards Selection

The new full model is

> M6.Full<-gls(Concentration ∼ fTreatment + fNutrient+

fTreatment:fNutrient,

weights = vfOptim, method = "ML",

data = Biodiv)

The only term that can be dropped is the interaction term.

> M6.Drop1<-update(M6.Full, .∼. -fTreatment:fNutrient)
> anova(M6.Full, M6.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M6.Full 1 12 321.2595 353.4450 -148.6297
M6.Drop1 2 10 406.0323 432.8536 -193.0161 1 vs 2 88.77283 <.0001

The interaction term fTreatment:fNutrient is highly significant, so no
further terms can be dropped.

4.2.4.5 The Aftermath

We applied the process of comparing nested models several times, and ended up
with a model containing Nutrient, Enrichment, and their interaction. The two-
way interaction term was significant. We reapplied this model with REML esti-
mation (step 9). Normality and homogeneity can safely be assumed (see Fig. 4.9).
Figure 4.9 was created with the following R code.

> MFinal <- gls(Concentration ∼ fTreatment * fNutrient,

weights = vfOptim, method = "REML",

data = Biodiv)

> E <- resid(MFinal, type = "normalized")

> Fit <- fitted(MFinal)

> op <- par(mfrow = c(1, 2))

> plot(x = Fit, y = E,

xlab = "Fitted values", ylab = "Residuals",

main = "Residuals versus fitted values")

> identify(Fit, E)

> hist(E, nclass = 15)

> par(op)
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Fig. 4.9 Residuals versus fitted values and a histogram of the residuals (denoted by E) for the
optimal GLS model that contains Nutrient, Enrichment, and their interaction

The gls command refits the model with REML, the resid command extracts
the normalised residuals, the object Fit are the fitted values, the plot command
plots the fitted values versus the residuals, and the hist command makes a his-
togram with 15 bars. The identify command allows us to identify the observa-
tion with the large residual (observation 26). We will return to this observation in a
moment.

Assuming that everything is ok, we can now proceed to step 10 and present the
relevant output of the final model using the summary(MFinal) command.

Generalized least squares fit by REML
Model: Concentration ∼ fTreatment + fNutrient + fTreatment:fNutrient

Data: Biodiv
AIC BIC logLik

327.9174 359.4171 -151.9587

Variance function:
Structure: Different standard deviations per stratum
Formula: ∼1 | fTreatment * fNutrient
Parameter estimates:
NoAlgae*NO3 Algae*NO3 NoAlgae*NH4 Algae*NH4 NoAlgae*PO3 Algae*PO3

1.00000 0.50104 1.33233 8.43635 0.48606 1.10733
Coefficients:

Value Std.Error t-value p-value
(Intercept) 15.78139 1.629670 9.683792 0
fTreatmentNoAlgae -14.69763 1.649868 -8.908365 0
fNutrientNO3 -15.66972 1.632542 -9.598358 0
fNutrientPO3 -13.36137 1.643649 -8.129089 0
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fTreatmentNoAlgae:fNutrientNO3 16.86929 1.663956 10.138067 0
fTreatmentNoAlgae:fNutrientPO3 12.95293 1.666324 7.773353 0

Residual standard error: 0.8195605
Degrees of freedom: 108 total; 102 residual

The AIC and BIC are model selection tools, and there is little to say about them
at this point as we have passed the model selection stage. The information on the
different standard deviations (multiplication factors of σ ) is interesting, as it shows
the different variances (or better: the ratio with the standard error) per treatment–
nutrient combination. The estimated value for σ is 0.819. Note that the combination
enrichment with algae and NH4 has the largest variance, namely (8.43 × 0.819)2.

The estimated regression parameters, standard errors, t-values, p-values, and
other relevant information are given as well. Note that all terms are significantly
different from 0 at the 5% level. To understand what the model is trying to tell us,
it can be helpful to consider a couple of scenarios and obtain the equations for the
fitted values or just graph the fit of the model. The easiest way of doing this is

> boxplot(predict(MFinal) ∼ fTreatment * fNutrient,

data = Biodiv)

This only works because all the explanatory variables are nominal. The resulting
graph is shown in Fig. 4.10 and clearly shows that the observations exposed to algae
treatment and NH4 enrichment have the highest values. This explains why the inter-
action term is significant. Unfortunately, at the time of writing, the predict.gls
function (which is the one used to obtain the predicted values) does not give stan-
dard errors for predicted values. To obtain the 95% confidence bands around the
fitted values, you need to use equations similar to those used for linear regression

Algae.NH4 NoAlgae.NH4 Algae.NO3 NoAlgae.NO3 Algae.PO3 NoAlgae.PO3

0
5

10
15

Fig. 4.10 Fitted values for the optimal model. Note the high values for the algae–NH4 combination
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Fig. 4.11 Normalised residuals versus treatment–nutrient combination. Note the effect of the
outlier for the algae–NO3 combination. This is observation 26

(Appendix A), but this requires some ugly R programming. Alternatively, you can
do some bootstrapping.

Before you happily write your paper using these results, there is one final point
you should know. Figure 4.11 shows a boxplot of normalised residuals versus the
treatment–nutrient combination. Note the effect of observation 26! We suggest that
you repeat the entire analysis without this observation. If this was an email, we
would now add a � as this obviously means a lot of extra work!. You will need to
remove row 26 from the data, or add subset = –26 to each gls command. The
first option is a bit clumsy, but avoids any potential error messages in the validation
graphs (due to different data sizes).
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