
Stockage, manipulation et analyse de
données matricielles avec PostGIS Raster

Pierre Racine
Professionel de recherche
Centre d’étude de la forêt

Département des sciences
du bois et de la forêt,
Université Laval, Québec

Session PostgreSQL
Paris, juin 2011

Boreal Avian
Modelling Project

Introducing PostGIS Raster

• Support for rasters in the PostGIS spatial database
- RASTER is a new native base type like the PostGIS GEOMETRY type
- Implemented very much like and as easy to use as the GEOMETRY

type
� One row = one raster
� One table = one coverage

- Integrated as much as possible with the GEOMETRY type
� SQL API easy to learn for usual PostGIS users
� Full raster/vector analysis capacity taking nodata value into account.
� Seamless when possible.

- First release with future PostGIS 2.0

• Development Team
- Current: Bborie Park, Jorge Arevalo, Pierre Racine,

Regina & Leo Obe
- Past: Sandro Santilli, Mateusz Loskot, David Zwarg

• Founding
- Steve Cumming through a Canada Foundation for Innovation grant
- Deimos Space, Davis University, Cadcorp, Azavea, OSGeo

Chapter 13 on
PostGIS Raster

• Georeferenced
- Each tile/raster is georeferenced

- Support for rotation (or skew)

• Multiband
- Support for band with different

pixeltypes in the same raster
� 1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF

- Full supports for nodata values (one per band)

- No real limit on number of band

• Tiled
- No real distinction between a tile and a raster

- No real limit on size
� 1 GB per tile, 32 TB per coverage (table)

� Rasters are compressed (by PostgreSQL)

- Support for non-rectangular tiled coverage

• Multiresolution (or overviews) are stored in different tables

• List of raster columns available in a raster_columns table similar to
the geometry_columns table

Georeferenced, Multiband,
Multiresolution and Tiled Coverages

upperLeftX,
upperLeftY

scaleX

scaleY

skewX

skewY

e.g. SRTM Coverage for Canada

Supports Many Raster Arrangements

overlaps

a)warehouse of untiled
and unrelated images
(4 images)

d)rectangular regularly
tiled raster coverage
(54 tiles)

Table 1

Table 2

e) tiled images (2 tables
of 54 tiles)

b)irregularly tiled raster
coverage (36 tiles)

missing
tile

smaller
tiles

c) regularly tiled raster
coverage (36 tiles)

missing
tile

same
size tiles

f) rasterized geometries
coverage (9 lines in the
table)

empty space

What You Can Do Now?
Store and manage rasters in the database…

• Import a series of raster

- raster2pgsql.py -r “c:/temp/mytiffolder/*.tif” -t mytable -s 4326
-k 50x50 -I | psql -d testdb

- Very similar to shp2pgsql

- Any raster format supported by GDAL

• Get details about the raster georeference

- ST_UpperLeftX(), ST_UpperLeftY(), ST_Height(), ST_Width(),
ST_ScaleX(), ST_ScaleY(), ST_SkewX(), ST_SkewY(),
ST_Georeference()

- ST_SRID(), ST_NumBands()

- ST_Metadata()

• Get details about bands

- ST_BandPixelType(), ST_BandNodataValue(), ST_BandPath()

- ST_BandMetaData()

What You Can Do Now?
Store and manage rasters in the database…

• Change the georeference and the spatial reference

- ST_SetScale (), ST_SetSkew(), ST_SetUpperLeft(),
ST_SetGeoReference

- ST_SetSRID()

• Change a band nodata value

- ST_SetBandNodataValue()

- ST_SetBandNodataValue(rast, NULL) –to unset nodata value

• Reproject rasters

- ST_Transform(rast, srid, algorithm, maxerr)

- NearestNeighbour, bilinear, cubic, cubic spline, lanczos

- Done with GDAL

What You Can Do Now?
Store and manage rasters stored outside the database…

- Provides faster loading and export of files for desktop application

- Provides faster access for web applications (JPEGs)

- Avoid useless database backup of large
datasets not requiring edition

- Avoid importation (copy) of large
datasets into the database

- Provides an efficient SQL API to
manipulate/analyse raster files

- All functions should eventually works
seamlessly with out-db raster

- Data read/write with GDAL (many formats)

BD

Web Client

landcover
raster
raster

raster

raster

raster

…

Web server

Web service

SQL

Image01.jpg

JPEGs

Image02.jpg

Image03.jpg

Image04.jpg

…

HTTP

What You Can Do Now?
Dump rasters from the database…

• With the GDAL driver 'PostGISRaster'

- Developed and maintained by Jorge Arévalo

• Read only and still needs optimization

• Two modes

1. ONE_RASTER_PER_ROW

2. ONE_RASTER_PER_TABLE (limited)

• gdal_translate "PG:host='localhost' dbname= 'myDB'
user= 'me' password= 'toto' table= 'myTable' mode='2' "
outputFile.tif

What You Can Do Now?
Get raster statistics…

• ST_SummaryStats(raster)

- Return a set of (min, max, sum, mean, stddev, count (of
withdata pixels)) records

- 10 seconds for one SRTM tile of 3600 x 3600 pixels, 70MB

• ST_Histogram(raster, bin, width[])

- Return a set of (min, max, count, percent)
records for an array of bins

• ST_Quantile(raster, quantiles[])

- Return a set of values for an array of
quantile

• ST_ValueCount(raster, values[])

- Return the frequency for an array of value

All stats function have:

• A exclude_nodata_value
parameter

• A version working on a
coverage of many tiles

• A sample_percent
parameter (except
ST_ValueCount())

What You Can Do Now?
Display rasters…

• Display the true raster

- QGIS plugin by Maurício de Paulo (mauricio.dev@gmail.com)

- gvSIG plugin by Nacho Brodin (ibrodin@prodevelop.es)

- MapServer

- Normally any software using GDAL to read raster and allowing
passing database connection parameters to GDAL

• Display a vectorization of the raster

- OpenJump
� SELECT ST_AsBinary((ST_DumpAsPolygons(rast)).geom),

(ST_DumpAsPolygons(rast)).val
FROM srtm_tiled
WHERE rid=1869;

- ArcGIS 10
� Add Query Layer (same as OpenJump but without ST_AsBinary())

- Any software displaying vector PostGIS queries

What You Can Do Now?
Edit rasters…

• ST_SetValue(raster, x, y, newval)

- ST_SetValue(raster, x, y, pt geometry)

- More ways to set raster values are planned

• ST_Reclass(raster, reclassexpr, pixeltype, nodataval)

- reclassexpr is a text string like '0-87:1-10, 88-254:11-15'
meaning map 0 to 87 to 1 to 10 and 88 to 254 to 11 to 15

- You can reset the nodata value

- You can pass an array of reclassexpr to reclass a multi-band raster

- Reclass a SRTM tile to a grayscale three band '8BUI' raster (JPEG)

� SELECT ST_Addband(ST_Addband(ST_AddBand(ST_MakeEmptyRaster(rast),
ST_Reclass(rast, '-100-2000:0-255', '8BUI')),
ST_Reclass(rast, '-100-2000:0-255', '8BUI')),
ST_Reclass(rast, '-100-2000:0-255', '8BUI'))

FROM srtm_22_03

What You Can Do Now?
Edit rasters…

• ST_MapAlgebra(raster, band,
expression,
nodatavalueexpr,
pixeltype)

• Expressions are evaluated by the PostgreSQL parser

- Any, really any, complex SQL expression

- e.g. 'SQRT(rast)/POWER(rast, 3) + ACOS(rast/(rast+1))'

- e.g. 'CASE WHEN rast < 0 THEN rast+10 ELSE NULL END'

• A nodatavalueexpr allow specifying an alternative
expression when the pixel is nodata

• SELECT ST_MapAlgebra(rast, 'rast/2', '32BF', '0')
FROM srtm_22_03

-4

-1

-2

2

-4

0

0

2

1

6

9

8

6

What You Can Do Now?
Convert rasters to any GDAL format with SQL…

• ST_GDALDrivers()

- Display the list of GDAL driver available with your version of GDAL

- SELECT (ST_GDALDrivers()).*

• ST_AsGDALRaster(rast, format, options[])

- SELECT ST_AsGDALRaster(rast, 'JPEG')
FROM srtm_22_03

• ST_AsTIFF(raster, nbands[], compression)

- Compression % can be specified after the compression 'JPEG80'

• ST_AsJPEG(raster, nbands[], quality)

• ST_AsPNG(raster, nbands[], compression)

What You Can Do Now?
Do raster/vector analysis…

• Extract ground elevation values for lidar points…

- SELECT lidarPtID, ST_Value(rast, geom) elevation
FROM lidar, srtm WHERE ST_Intersects(geom, rast)

• Intersect a road network and extract
elevation values for each road segment

- SELECT roadID,
(ST_Intersection(geom, rast)).geom road,
(ST_Intersection(geom, rast)).val elevation

FROM roadNetwork, srtm WHERE ST_Intersects(geom, rast)

1000m

0m

What You Can Do Now?
Do raster/vector analysis…

• Compute the mean temperature around a series of point

1. CREATE TABLE pointBuffers AS
SELECT pointID, ST_Buffer(geom, 200) FROM pointTable

2. SELECT pointID, (gv).geom pointBuffer, (gv).val temp
FROM (SELECT pointID, ST_Intersection(geom, rast) gv

FROM pointBuffers, temperature
WHERE ST_Intersects(geom, rast)

• Results must be summarized per buffer afterward

• All analysis functions take nodata values into account

• See the tutorial in the wiki

pointTable
geom pointid
point 24

point 46

point 31

point 45

… …

∩∩∩∩ =

pointBuffers
geom pointid

polygon 24

polygon 46

polygon 31

polygon 45

… …

temperature
raster
raster

raster

raster

raster

…

result
geom pointID temp

polygon 24 11.2

polygon 53 13.4

polygon 24 15.7

polygon 23 14.2

… … …

id=24
temp=11.2

id=24
temp=15.7

What You Can Do Now?
Create a high resolution analysis grid for a large area…

Compute the quantities of many
variables for each raster cell

• Road length, mean temperature, population,
water surface, river length, Etc…

• Easy in vector mode (1 cell = 1 polygon) but
what about all of France at 10m?

100 000 x 100 000
=

way too many polygons!

• Manageable in raster format!

1. Intersect your layers with an index raster

2. Summarize per pixel

3. Assign results to new bands

What You Can Do Now?
Create a specialised web or desktop GIS application…

• With the raster API, PostGIS is now a very complete SQL GIS

- All data are implicitly tiled and spatially indexed

- No need to write complex C,C++, Python or JAVA code to
manipulate complex geographical datasets.

- Use SQL: The most used, most easy and most
minimalist though complete language to work
with data in general. Easily extensible (PL/pgSQL)

- Keep the processes close to the data where the
data should be: in a database!

• Lightweight multi-users specialized
desktop and web GIS applications

- All the (geo)processing is done in the database

- Applications become simple SQL query builders
and data (results) viewers

Desktop or Web
Applicaton

(query building
& display)

Spatial Database
(geoprocessing)

SQL

table,
vector,
raster

What You Can Do Now?
Implement a WPS server raster/vector geoprocessor…

Desktop or Web
WPS Client

PostGIS
(geoprocessing)

WPS
query

WPS
answer

WPS Server

SQL
table,

vector,
raster

What You Can Do Now?
Develop new raster processing functions…

• ST_MakeEmptyRaster()

• ST_AddBand()
- Empty band or copy a band from another raster

• All georeference setters
- ST_SetScale (), ST_SetSkew(), ST_SetUpperLeft(), ST_SetGeoReference()

• ST_SetBandNodataValue

• ST_SetValue()

• Coordinates transformation helpers
- ST_World2RasterCoordX(), ST_World2RasterCoordY(),

ST_Raster2WorldCoordX(), ST_Raster2WorldCoordY()

• ST_Intersection() & ST_intersects()
- To interact with vector data

• Many more…

What You Can Do Now?
Develop new raster processing functions…

• PL/pgSQL example for ST_DeleteBand

CREATE OR REPLACE FUNCTION ST_DeleteBand(rast raster, band int)
RETURNS raster AS $$
DECLARE

numband int := ST_NumBands(rast);
newrast raster := ST_MakeEmptyRaster(rast);

BEGIN
FOR b IN 1..numband LOOP

IF b != band THEN
newrast := ST_AddBand(newrast, rast, b, NULL);

END IF;
END LOOP;
RETURN newrast;

END;
$$ LANGUAGE 'plpgsql';

Performance?

• Import of 900MB of uncompressed 16BSI GeoTIFF
SRTM

- 13 SRTM files

- tiled to 48373 100x100 pixels tiles: 3 minutes

- tiled to 525213 30x30 pixels tiles: 6 minutes

• ST_Intersection() of 814 buffers with the 30x30 900 MB
SRTM coverage

- 4 minutes

• ST_Intersection() of 100 000 lines with a 300 MB landsat
image

- 8 minutes

Comparison with Oracle GeoRaster

Oracle GeoRaster

• Stored as a one to many relation
between two types, in two
different tables
- SDO_GEORASTER (raster)

- SDO_RASTER (tile)

- Only SDO_RASTER is georeferenced

• Supports (too) many raster
features for any kind of raster
application
- bitmap mask, two compression

schemes, three interleaving types,
multiple dimensions, embedded
metadata (colour table, statistics,
etc…), lots of unimplemented features

• Hard to load data

• Designed for raster storage

PostGIS Raster

• Stored as a unique type, in one
table

- RASTER (or tile)

- Each raster is geoferenced

• Supports the minimal set of
characteristics for the geospatial
industry

- georeference, multiband, tiling,
pyramids, nodata values

• Easy to load data

• Designed for raster/vector
analysis

What You Can Do Soon?
Write to PostGIS raster with GDAL…

• A write GDAL driver do not exist yet.

• It should allows

- loading raster in the database using gdal_translate

- loading many raster at the same time

- any application writing to GDAL to write to PostGIS raster

- tiling a raster to any tile size

- to create overviews

What You Can Do Soon?
Convert geometries to raster…

Resample/retile a raster coverage…

• ST_AsRaster(geometry)

- Alignment and pixelsize can be determined from:

1. Parameters

2. The extent of the geometry

3. The first encountered segment length
(to quickly rasterize previously vectorized rasters)

4. A provided existing raster

• ST_Resample(raster)

- Only realign

- Resample and realign

- From parameters or an existing raster

• ST_Intersection(raster, raster) -> raster

- Equivalent to ST_Clip(raster, ST_AsRaster(geometry))

- Useful for retiling an existing coverage to a new one

What You Can Do Soon?
Complex MapAlgebra analyses…

• Already available: One raster version of ST_MapAlgebra()

• Soon: Faster user-defined function version

- Function taking a pixel value and some
parameters and returning a computed value

� CREATE FUNCTION polynomial(x float,
VARIADIC args TEXT[])

RETURNS FLOAT AS $$
DECLARE

m FLOAT;
b FLOAT;

BEGIN
m := args[1]::FLOAT;
b := args[2]::FLOAT;
return m * x + b;

END; $$ LANGUAGE 'plpgsql';

� SELECT ST_MapAlgebra(raster, 'polynomial', ARRAY['1.34', '5.2'])

What You Can Do Soon?
Complex MapAlgebra analyses…

• One raster neighbor version

- User function taking a 3x3, 5x5, 7x7, or more
raster and optional parameters and returning a value

- Useful to implement any focal function (“moving window”)

- Possibility to pass the name of a coverage where to get out-of-
bound pixel values

• Two rasters version

- SELECT ST_MapAlgebra(elev1.rast, elev2.rast, 'rast1 + rast2) / 2',
'32BF', 'INTERSECTION')
FROM elev1, elev2 WHERE ST_Intersects(elev1.rast, elev2.rast)

- Useful to implement most overlay functions and more
� ST_Union(raster, raster) -> raster

� ST_Intersection(raster, raster) - > raster

� ST_BurnToRaster(raster, geometry, value)…

- Resample/realign on the fly. Takes care of nodata values.

- Resulting extent can be FIRST, SECOND, UNION or INTERSECTION.

-4

-1

-2

2

-4

0

0

2

1

-10

-2

-5

0

-12

-2

0

2

1

0

-4.5

-6

0

What You Can Do Soon?
Aggregate many tiles into one raster… (or merge)

• Use ST_Union as an aggregate function

- Taking a state, a temporary and a final function specifying how to
aggregate pixel values in a state, a temporary and a final raster

- User can defines their own expressions or use predefined
functions like FIRST, LAST, MIN, MAX, SUM, MEAN, COUNT

• Ex. SELECT ST_Union(raster, 'MEAN')

- Compute the mean pixel value of many overlapping pixels

- The state function 'SUM' accumulate pixel values

- The temporary function 'COUNT' count the number of pixels

- The final function 'state raster/temporary raster' divide the sum
by the count

- See pl/pgsql code in raster/script/plpgsql/st_union.sql

What You Can Do (maybe not too) Soon?
Interpolate a raster coverage from a point coverage…

• ST_Interpolate(pts geometry)

- Should be an aggregate returning one raster
(or a set of tiles)

- Implementing many different interpolation
algorythms

� Nearest neighbor, linear, polynomial

- Very useful to convert lidar data to raster

• ST_AsDensity(geometry)

- Count the number of features touching each
pixel and then smooth the surface using a
moving window (neighbor map algebra)

What You Can Do (maybe not too) Soon?
Create a clean raster coverage… from a messy one…

1. Load a bunch of unaligned overlapping rasters
(e.g. landsat)

2. ST_SetBrightness() & ST_SetContrast()

- or ST_NormalizeColor('table', 'rasterColumn')

3. ST_MakeEmptyRasteerCoverage()

- Create a vector grid or an empty raster coverage based on a set
of parameters

4. ST_MapAlgebra(emptyRaster, messyRaster, 'MEAN',
'FIRST') -> raster

What You Can Do (maybe not too) Soon?
Recognize forms from images stored in the DB…

• And automatically convert them to geometries

• Need more research…

• PostGIS Raster is multiband, tiled, multiresolution

- Each band supports one nodata value, one pixel type.

- One row = one raster, one table = one coverage.

- Supports many tile arrangement.

- Very much like a vector coverage.

- Import is done the same way as usual with PostGIS:
raster2pgsql

• There are plenty of functions to…

- manipulate,

- edit,

- do raster and raster/vector analysis,

- get raster statistics,

- create new rasters

- Write web and desktop applications in a client-server context

Summary

Thanks!

http://trac.osgeo.org/postgis/wiki/WKTRaster

Boreal Avian
Modelling Project

