
L'analyse de données matricielles dans
une base de données géospatiale:
L'approche PostGIS Raster

Boreal Avian
Modelling ProjectPierre Racine

Professionnel de rechercheProfessionnel de recherche
Centre d’étude de la forêt
Département des sciences
du bois et de la forêt
Université Laval

Centre d’information topographique
Ressources naturelles Canada
Sherbrooke - Janvier 2011

What is a spatial database?
• DBMS with native support for the geometry type

- Relations Normalisation
- Standard Query Language (SQL)
- Transactions & Rules
- Security & Backup
- SQL Functions & Operators

properties

shape owner

polygon Jean

polygon Pierre

polygon Marc

properties

geometry owner

polygon Jean

polygon Pierre

polygon Marc

shapefile spatial DB

districts

geometry id

polygon AB12

polygon CF34

polygon RT43- SQL Functions & Operators
(intersect(), within(), area(),
=, &&, etc…)

- What is the area — and who is the owner — of properties located in district AB12?

• IBM DB2 Spatial Extender, Informix Spatial DataBlade, Oracle Spatial,
PostgreSQL/PostGIS, ESRI's ArcSDE, SQLite

• Only Oracle, PostgreSQL/PostGIS & SQLite
offer native raster support

polygon Marc

polygon Jean

… …

polygon Marc

polygon Jean

… …

SELECT area(geometry), owner FROM properties, districts
WHERE intersect(properties.geometry, districts.geometry) and district.id = “AB12”

polygon RT43

polygon RE42

… …

elevation

raster rid

raster RE42

… …

What are the advantages of
storing raster in a spatial database?

• Integrate ALL data together
- One unique storage & backup solution.

• SQL
- The most used, most easy and most

minimalist though complete language to work minimalist though complete language to work
with data in general. Easily extensible (PL/pgSQL).

- A single development paradigm for all data.
- No need to program in complex languages (C or others).

• Data integrity and multi-user edition
- ACID (Atomicity, Consistency, Isolation, Durability)

• Support for tiled raster/vector coverages
- Fast operations on VERY LARGE coverages

Introducing PostGIS Raster

• Support for rasters in the PostGIS spatial database
- RASTER is a new native base type like the PostGIS GEOMETRY type
- Implemented very much like and as easy to use as the GEOMETRY

type
� One row = one raster
� One table = one coverage

- Integrated as much as possible with the GEOMETRY type- Integrated as much as possible with the GEOMETRY type
� SQL API easy to learn for usual PostGIS users
� Full raster/vector analysis capacity taking nodata value into account.
� Seamless when possible.

- First release with future PostGIS 2.0
• Development Team

- Current: Jorge Arevalo, Pierre Racine, Mateusz Loskot,
Regina & Leo Obe

- Past: Sandro Santilli, David Zwarg
• Funding

- Steve Cumming through a Canada Foundation for Innovation grant
- Deimos Space, Cadcorp, Michigan Tech Research Institute, Azavea, OSGeo

Chapter 13 on
PostGIS Raster

Some Open Source
Geospatial Software Background

• PostGIS
- First open source spatial database.
- Advantageously comparable to the vector part of Oracle Spatial.
- Developed by Refraction Research (Victoria Canada) and many other

contributors since 2001.
- Used world wide in thousands of installations for the storage, manipulation,

analysis and publishing of vector data.analysis and publishing of vector data.

• GDAL/OGR
- Geospatial Data Abstraction Library.
- Abstracts raster and vector file formats into a single API used by many

software products (open and not open source).
- Mainly developed since 1998 by Frank Warmerdam

(former employe of PCI in Ontario) and many other contributors.

• MapServer
- Most used and most powerful multilayer rasterizer of geospatial information

for webGIS. Used by thousands of web sites around the world.
- Now mainly developed by MapGears in Chicoutimi.

• A web site for researchers in forestry, ecology and
environment

• Doing buffer analysis over HUGE raster and vector
datasets (covering the extent of Canada)

The Context
The Canadian Spatial Data Foundry

elevation, etc…

temperature

forest cover
geom obsID

polygon 1

polygon 2

polygon 3

polygon 4

…

meanTemp

20.3

15.5

17.5

10.4

…

elevation

450.2

467.3

564.8

390.2

…

etc…

…

…

…

…

…

cutProp

75.2

26.3

56.8

69.2

…

Strategies for Implementing the
Base Buffering Process

We need code for…

• vector storage &
manipulation

Strategy
A

database

B
database

C
database

Strategy C (implementing raster as a native type into
PostGIS) is a more elegant and generic solution

answering many more GIS problems

• raster storage &
manipulation

• analysis processes

outside
database

specific
homemade
application

database
(non-native

support)

specific
homemade
application

database
(native support)

database

Raster in the Database Requirements
(actually PostGIS Raster features…)

1. Support for georeferenced, multiband,
multiresolution and tiled raster coverages

• Efficient storage of non-rectangular coverages
• Support for nodata value and numerous pixeltypes

2. SQL operators and functions for raster
manipulation and analysismanipulation and analysis

3. SQL operators and functions
working seamlessly on raster and vector data

• Lossless conversion between raster and vector

4. Easy import/export of rasters from/to the
filesystem

5. Registration (in the database) of metadata
for rasters staying outside the database

• Georeferenced
- Each tile/raster is georeferenced
- Support for rotation (or skew)

• Multiband
- Support for band with different

pixeltypes in the same raster
� 1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF

1) Georeferenced, Multiband,
Multiresolution and Tiled Coverages

upperLeftX,
upperLeftY

pixelSizeX

pixelSizeY

skewX

skewY

� 1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF

- Full supports for nodata values (one per band)
- No real limit on number of band

• Tiled
- No real distinction between a tile and a raster
- No real limit on size

� 1 GB per tile, 32 TB per coverage (table)
� Rasters are compressed (by PostgreSQL)

- Support for non-rectangular tiled coverage
• Multiresolution (or overviews) are stored in different tables
• List of raster columns available in a raster_columns table similar to

the geometry_columns table

e.g. SRTM Coverage for Canada

2) SQL Operators and Functions for
Raster Manipulation and Analysis

implemented, being implemented, planned

• All indexing operators: <<, &<, <<|, &<|, &&, &>, >>, |&>, |>>, ~=, @, ~

• Get and set raster properties: width(), height(), upperleft(),
setupperleft(), pixelsize(), setpixelsize(), skew(), setskew(), numbands(),
hasband()

• Get and set raster band properties: bandpixeltype(),
bandnodatavalue(), setbandnodatavalue(), bandhasnodatavalue(),
setbandhasnodatavalue(), bandpath(), bandisnodata(), setbandpath()

• Get and set pixel values: value(), setvalue(), values(), setvalues(),
reclass(), getstats(), etc…

• Creation: makeemptyraster(), addband(), addrastercolumn(), etc…

• Transformation: resample(), etc…

• Conversion: toimage(), tojpeg(), totiff(), tokml(), etc…

Simple Examples
• SQL

SELECT rid, rast, ST_UpperLeftX(rast), ST_UpperLeftY(rast)
FROM mytable

• PL/pgSQL
CREATE OR REPLACE FUNCTION ST_DeleteBand(rast raster, band int)

RETURNS raster AS $$
DECLAREDECLARE

numband int := ST_NumBands(rast);
newrast raster := ST_MakeEmptyRaster(rast);

BEGIN
FOR b IN 1..numband LOOP

IF b != band THEN
newrast := ST_AddBand(newrast, rast, b, NULL);

END IF;
END LOOP;
RETURN newrast;

END;
$$ LANGUAGE 'plpgsql';

3) SQL Operators and Functions Working
Seamlessly on Raster and Vector

The time is past when we wanted to
work on raster data differently than on vector data!

We just want to work on COVERAGES!
(in whatever format they are: vector, raster, TIN, point cloud, etc…)

• Seamless raster versions of existing geometry functions: srid(),
setsrid(), convexhull(), envelope(), isempty(), union(), area(), is valid(), setsrid(), convexhull(), envelope(), isempty(), union(), area(), is valid(),
centroid(), transform(), rotate(), scale(), translate(), etc…

• Easy raster to vector conversion functions: dumpaspolygons(),
polygon(), pixelaspolygon(), pixelaspolygons(), etc…

• Easy vector to raster conversion functions: asraster(), toraster(),
interpolate(), etc…

• Major vector-like analysis functions working with rasters:
intersection(), intersects(), within(), contains(), overlaps(), etc…

• Major raster-like analysis functions working with vectors:
mapalgebra(), clip(), etc…

• Categorical rasters layers convert
well to vector layers
- one variable converts to one column
- groups together pixels of same value
- contiguous or not
- continuous raster layers do not convert as well

• Vector layers do not convert well to raster layers

3 b) Lossless Conversion Between
Vector and Raster Coverages

ve
ct

or
is

at
io

n

landcover
geometry type
polygon 4
polygon 3
polygon 7

landcover

landcover

• Vector layers do not convert well to raster layers
- each attribute (e.g. type) must be

converted to one raster
- no support for nominal values (e.g. “M34”)
- global values (area) lose their meaning
- overlaps are lost
- resolution must be high to match vector

precision
- features lose their unique identities
- reconversion to the original vector is very difficult or impossible

ra
st

er
is

at
io

n

polygon 7
… …

landcover
geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56

… … … …

mapsheet
area

We need a better way to convert vector layers to rasters without destroying objects’ identities

• In a vector layer, each object has its own identity
landcover

geometry type mapsheet area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56
polygon 9 M34 24.54
polygon 5 M33 23.43
polygon 2 M32 12.34

… … … …

3 b) Lossless Conversion Between
Vector and Raster Layers

• In a raster layer converted from a vector layer, each object should also
conserve its own identity

- Each “raster object” has its own georeference
- Black pixels are “nodata values”
- Like vectors, raster objects may or may not overlap
- Raster algorithms can be used on the whole layer after a “blend” of the objects into a single raster

landcover
raster type mapsheet area
raster 4 M34 13.34
raster 3 M33 15.43
raster 7 M33 10.56
raster 9 M34 24.54
raster 5 M33 23.43
raster 2 M32 12.34

… … … …

Rasters become just another way to store
geographic features in a more expressive

vector object-oriented-like style

• The goal is to be able to do overlay operation on coverages the same
way we are used to do them on vector coverage but without worrying if
data are stored in vector format or raster format.

ST_Intersection
(implemented)

cover
geom ctype

polygon 4
polygon 3
polygon 5
polygon 2

observation
geom obsid
point 24
point 31
point 45

… …

result
geom obsid ctype

polygon 24 4
polygon 53 3
polygon 24 5
polygon 23 2

∩∩∩∩ �

area
10.34
11.23
14.23
9.45

observ
geom obsid

polygon 24
polygon 31
polygon 45

… …

cover
raster ctype
raster 4
raster 3
raster 5
raster 2

- ST_Intersects takes nodata value into account.
- Great simplification of applications concepts and graphical user interfaces
- See the tutorial on the PostGIS Raster wiki…

polygon 2
… …

… … polygon 23 2
… … …

SELECT ST_Intersection(ST_Buffer(observ.geom, 1000), cover.geom) as geom,
obsid, ctype
FROM observation, cover
WHERE ST_Intersects(ST_Buffer(observation.geom, 1000), cover.geom)

9.45
…

SELECT obsid, geom, ctype, ST_Area(geom) as area FROM (

) foo

… … raster 2
… …

(gv).geom, (gv).val, (gv).geom
gv,

, ctype
rast

rast

ST_MapAlgebra
(being implemented)

• Generate a new raster, pixel by pixel, as a the result of an expression
involving one, two or more rasters
- One input and two input rasters versions
- Resulting extent can the same as be the first

raster, the second raster, the intersection or
the union of both

- Misaligned and different resolution rasters are

[a] = [b] + [c]

- Misaligned and different resolution rasters are
automatically resampled to first or second raster

- Absent values (or nodata values) are replaced with NULL
or a provided value (so we can refer to them in expressions)

- Resulting pixeltype can be specified
- Will allow referring to surrounding or neighbor tile pixels

values for focal & zonal functions. i.e. 'rast2[-1, -1]‘
- Expressions are evaluated by the PostgreSQL SQL

engine so that users can use their own Pl/pgSQL functions
- Will also allow passing geometries and values in place of raster

for a seamless integration with vector data

[-1,1]

[-1,0]

[-1,-1]

[0,1]

[0,0]

[0,-1]

[1,1]

[1,0]

[1,-1]

ST_MapAlgebra
(being implemented)

• Example 1: Reclassifying pixel values (one raster version)
- SELECT ST_MapAlgebra(rast, 'CASE WHEN rast < 0 THEN 0

ELSE rast
END')

FROM elevation

• Example 2: Computing the mean + some personnal adjustment (two

-4

-1

-2

2

-4

0

0

2

1

0

0

0

2

0

0

0

2

1

• Example 2: Computing the mean + some personnal adjustment (two
rasters version)

- SELECT ST_MapAlgebra(elev1.rast, elev2.rast, 'rast1 + rast2) / 2 +
MyAdjustment(rast1, rast2)', '32BF', 'INTERSECTION')
FROM elev1, elev2 WHERE ST_Intersects(elev1.rast, elev2.rast)

• You can also intersect or merge
rasters, create raster aggregates,
and many funny things!

-4

-1

-2

2

-4

0

0

2

1

-10

-2

-5

0

-12

-2

0

2

1

0

-4.5

-6

0

4) Easy Import/Export of
Raster From/To the Filesystem

PostgreSQL
PostGIS

coverage table

import

(or load)

export

(or dump)

• Import is done with raster2pgsql.py• Import is done with raster2pgsql.py
- Very similar to PostGIS shp2pgsql
- Batch import, production of overviews and creation of tiling and index
- Can import many file formats (thanks to GDAL)
- Example:

� raster2pgsql.py –r “c:/temp/mytiffolder/*.tif” -t mytable -s 4326 -k 50x50 -I >
c:\temp\mytif.sql

� psql -f c:\temp\mytif.sql testdb

• Export is done using the GDAL PostGIS Raster driver

5) Registration of Metadata for Rasters
Staying Outside the Database

- Provide faster loading and export of files for desktop application
- Provide faster access for web applications (JPEGs)
- Avoid useless database backup of large

datasets not requiring edition
- Avoid importation (copy) of large

datasets into the database

Web Client

Web server
Web service

HTTP

datasets into the database
- All functions should eventually works

seamlessly with out-db raster
- Data read/write with GDAL (many formats)
- Eventual possibility to convert out-db

raster to in-db raster and hence, to
load rasters in the DB using SQL
� CREATE TABLE outraster AS

SELECT ST_MakeRegisteredRaster('c:/temp/mytiff/*.tif')
� CREATE TABLE inraster AS

SELECT ST_MakeBandInDB(rast, band) FROM outraster

BD
landcover

raster
raster
raster
raster
raster

…

Web service

SQL

Image01.jpg

JPEGs

Image02.jpg
Image03.jpg
Image04.jpg

…

A Complete Framework for Light
GIS Application Development

• GIS in the Database: A complete SQL geospatial API
working as seamlessly as possible on any type of coverage

- Vector, raster, TIN, point cloud, etc…
- Implicitly tiled and spatially indexed
- Use SQL: The most used, most easy and most

minimalist though complete language to work

Desktop or Web
Applicaton

(query building
& display)minimalist though complete language to work

with data in general. Easily extensible (PL/pgSQL)
- Keep the processes close to the data where the

data should be: in a database
- DBMS client-server architecture good for

desktop and web applications, single and multi-users

• More lightweight applications
- All the (geo)processing can be done in the database
- Desktop and web applications become

simple SQL query builders and data displayer

& display)

Spatial Database
(geoprocessing)

SQL
table,

vector,
raster

Introducing
PostGIS Raster "Raster Objects"

• Rasters created by converting geometries coverage
become raster becomes vector like "raster objects".

• Like vector geometries, raster objects:
- are independent from each others
- have their own localisation (or georeference)- have their own localisation (or georeference)
- can overlap
- can change location independently
- can represent individual objects with their own identity

• Moreover, raster objects can be used to model real life
objects better represented as small fields (like fires or
fuzzy objects).

• Very new type of GIS object

Raster Objects VS Other GIS Objects
• Point and Line Coverages
• Polygon Coverages

- Objects represent a constant surface with an identity and
properties (like an object in a OO context)

• New Raster Object Coverages
- Constant Raster Objects (categorical)

� Objects represent a constant surface with an identity and properties (like a
feature or an object)
Better modelled as polygon, but modelled as raster because they are better � Better modelled as polygon, but modelled as raster because they are better
processed using existing raster algorithms (eg. landcover, basin)

� E.g.: land use; land cover; traditional raster objects that should overlap but can’t
because they are in raster format (ex. buffers, animal territories)

- Variable Raster Objects (field)
� Objects represent a variable field that have an identity and properties
� Generally modelised as a unique raster and difficult to

model as polygons
� E.g.: fire, fuzzy objects (lakes, land cover, forest

stands, soil), area of influence, animal territories

• Traditional Raster Coverages
- Represent a variable field with

different values (no unique identity or other properties)
- E.g.: elevation, climate, etc…

Comparison with Oracle GeoRaster

Oracle GeoRaster
• Stored as a one to many relation

between two types, in two
different tables
- SDO_GEORASTER (raster)
- SDO_RASTER (tile)

PostGIS Raster
• Stored as a unique type, in one

table
- RASTER (or tile)
- Each raster is geoferenced

- Only SDO_RASTER is georeferenced

• Supports (too) many raster
features for any kind of raster
application
- bitmap mask, two compression

schemes, three interleaving types,
multiple dimensions, embedded
metadata (colour table, statistics,
etc…), lots of unimplemented features

• Hard to import
• Designed for raster storage

• Supports the minimal set of
characteristics for the geospatial
industry

- georeference, multiband, tiling,
pyramids, nodata values

• Easy to import
• Designed for raster/vector

analysis

Quelques questions de recherche
• Avec un API rendant transparentes les opérations d'analyse

raster/vector, comment pouvons-nous simplifier les interfaces
graphiques des SIG en proposant un minimum d'opérations? Quelles
devrait être ces opérations?

• Maintenant qu'il est possible de stocker une
couche matricielle discontinue, comment modifier
les algorithmes opérants sur des couches les algorithmes opérants sur des couches
matricielles continue pour qu'ils fonctionnent sur
ce type de couche?

• Comment pouvons-nous utiliser ces « raster objects » pour générer des
objets aux contours flous? Quels doivent être les opérations possibles
sur ces objet flous?

• Comment pouvons-nous utiliser ces
« raster objects » pour mieux modéliser
les objets typiquement matriciels dans les
systèmes de simulation spatialement explicites?

Summary
• Lightweight applications (web or desktop) like the Canadian Spatial Data

Foundry needs server API to manipulate and analyse vector and raster
data. When possible, seamlessly. Ideally in SQL.

• PostGIS Raster aims to provide such an integration
- Support for multiband, multiresolution, tiled and non-rectangular raster

coverages
- Seamless operators & functions on raster & vector types- Seamless operators & functions on raster & vector types

� Lossless conversion between raster & vector layers
� ST_Intersection and ST_MapAlgebra and many others working seamlessly on raster and vector

- Storage of metadata for raster stored outside the DB
- Easy import/export similar to PostGIS shp2pgsql

• A new approach to geospatial application development
- All GIS processes on raster and vector can now be done in the database

• Introduction of a new kind of GIS raster objects useful for:
- modelling categorical features needing raster algorithms
- or fuzzy objects requiring their own identities

Thanks!

http://trac.osgeo.org/postgis/wiki/WKTRaster

Boreal Avian
Modelling Project

