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Abstract. The ecological processes that create spatial patterns have been examined by
direct measurement and through measurement of patterns resulting from experimental
manipulations. But in many situations, creating experiments and direct measurement of
spatial processes can be difficult or impossible. Here, we identify and define a rapidly emerging
alternative approach, which we formalize as ‘‘space as a surrogate’’ for unmeasured processes,
that is used to maximize inference about ecological processes through the analysis of spatial
patterns or spatial residuals alone. This approach requires three elements to be successful: a
priori hypotheses, ecological theory and/or knowledge, and precise spatial analysis. We offer
new insights into a long-standing debate about process–pattern links in ecology and highlight
six recent studies that have successfully examined spatial patterns to understand a diverse
array of processes: competition in forest-stand dynamics, dispersal of freshwater fish,
movement of American marten, invasion mechanisms of exotic trees, dynamics of natural
disturbances, and tropical-plant diversity. Key benefits of using space as a surrogate can be
found where experimental manipulation or direct measurements are difficult or expensive to
obtain or not possible. We note that, even where experiments can be performed, this procedure
may aid in measuring the in situ importance of the processes uncovered through experiments.

Key words: a priori inference; competition; dispersal; diversity; ecological processes; invasion; space as
a surrogate; spatial pattern; spatial residuals.

[W]e must find ways to quantify patterns of variability

in space and time, to understand how patterns change

with scale . . . , and to understand the causes and

consequences of pattern . . . .

—Simon A. Levin (1992:1961)

INTRODUCTION

A major objective of ecological research has been

quantifying and determining the underlying processes

responsible for spatial patterns of ecological phenomena

(Tilman and Kareiva 1997, Liebhold and Gurevitch

2002, Tuda 2007). To date, the link between spatial

pattern and process has been addressed using: (1)

experimentation (e.g., Fonteyn and Mahall 1981, Stoll

and Prati 2001, Kikvidze et al. 2005, McIntire and Hik

2005); (2) direct parameterization of spatial models from

data (e.g., Turchin 1998, Schultz and Crone 2001, Clark

et al. 2004); (3) simulation of processes within a spatial

domain (e.g., Pacala et al. 1996, He and Mladenoff 1999,

Fall and Fall 2001, Fortin and Dale 2005, McIntire et al.

2007); and (4) through analysis of the spatial pattern

itself with the goal of uncovering the process (e.g., Olden

et al. 2001, Tuomisto et al. 2003, McIntire 2004, Fang

2005, Broquet et al. 2006, Fajardo and McIntire 2007).

Authors that have attempted the fourth approach have

often indicated difficulty when measuring the process

directly or building experiments (e.g., Jolles et al. 2002,

Fajardo and McIntire 2007) because they are not

practical (Schurr et al. 2004, Clark 2007), prohibitively

expensive, unethical, or overly time consuming, leaving

them with this pattern–process approach as a sole

option. The aim of this paper is to propose a framework

for using space as a surrogate for uncovering ecological

processes from the study and analysis of spatial patterns

or spatial residuals.
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According to Keitt and Urban (2005), the lack of a

clear link between process and spatial pattern is the

Rosetta Stone of ecology, i.e., if we can unlock this

difficulty, we will gain other insights into ecological

functioning. Unfortunately, numerous studies have

concluded that analyses of spatial patterns per se are

insufficient to explain the processes responsible for the

observed ecological patterns (Cale et al. 1989, Silver-

town and Wilson 1994, Moravie and Robert 2003,

Borcard et al. 2004), leaving the biological significance

of the pattern largely unknown if subsequent manipu-

lations are not pursued (Murrell et al. 2001). This

perspective has prevailed because of several known

biological phenomena: (1) various processes may create

the same pattern (Cale et al. 1989, Perry et al. 2006); (2)

causality may not be straightforward (Rees et al. 1996,

Turner et al. 2001) (e.g., well-defined nonrandom

processes can produce patterns indistinguishable from

apparent random assembly; Cale et al. 1989, Molofsky

et al. 2002); and (3) processes may also be the result of

specific patterns (Stoll and Prati 2001)—a dominant

paradigm of landscape ecology (Turner 1989). While

these phenomena have elements of truth, their inverses

are not necessarily false. In other words, a single process

can create a single precise pattern (e.g., Schurr et al.

2004, Fajardo and McIntire 2007), nonrandom process-

es can create highly structured patterns (e.g., Molofsky

et al. 2002, Broquet et al. 2006), and the impact of

pattern on process may not act at the same scales as the

impact of process on pattern and so will be discernible.

Though the bridge between process and pattern is

imperfect and can be confounded by other processes

acting at diverse scales (Real and McElhany 1996, Jolles

et al. 2002), biological organization exists, and so the

link between process and pattern remains to be

uncovered and utilized for understanding and prediction

(e.g., Barot et al. 1999, Schurr et al. 2004).

Recent changes in our understanding of causality

(Pearl 2000, Shipley 2000), the continued development

of analytical tools for spatial data (Perry et al. 2002,

Borcard et al. 2004, Wiegand and Moloney 2004, Fortin

and Dale 2005, Keitt and Urban 2005, Ives and Zhu

2006), and our awareness that a priori multiple

hypothesis testing is inferentially strong (Burnham and

Anderson 2002), have started to minimize the perceived

biological limitations of the process–pattern link. This

has allowed studies across a broad range of topics and

using a wide variety of spatial analytical tools to

successfully infer process from pattern (e.g., Barot et

al. 1999, Jolles et al. 2002, Schurr et al. 2004). With this

novel understanding, the numerous prior studies stating

that focal processes cannot be determined by the

observed patterns may, in part, reflect a limitation of

the precision of the analytical approach used, rather

than an insurmountable biological phenomena limiting

process–pattern linkages. We propose that the percep-

tion of biological limitations may be heavily rooted in

analytical issues (which we address and elaborate on

below) that, once detected and solved, can help us

enhance the link between process and spatial pattern.

Here, we demonstrate the rapidly emerging use of

spatial patterns to help elucidate the underlying

ecological processes and formalize this procedure with

the title ‘‘space as a surrogate’’ for unmeasured or

unmeasurable processes. This is not just a statistical

technique per se, rather, it is a merging of three

components that must act together: precise implemen-

tation of ecological theory and/or knowledge, a priori

inference, and precise application of spatial analytical

tools. In essence, this is related to the inverse modeling

approach that examines the outcomes of ecological

processes and infers the cause via direct parameteriza-

tion of process models (Ogle et al. 2004). We also

contextualize this procedure within the broader litera-

ture of model inference (Burnham and Anderson 2002),

spatial analysis (Fortin and Dale 2005), and strong

inference (Platt 1964), while demonstrating its impor-

tance and utility. Our presentation of the concept of

space as a surrogate is organized in three sections. In the

first section, we examine why the process–pattern link

(in the absence of experimentation) has been often

rejected in the past. Second, we present a framework for

utilizing space as a surrogate for underlying processes.

In the third section, we present six case studies from a

diverse set of fields showing the success of this approach.

PREVIOUS ATTEMPTS

In many cases, efforts to deduce process from spatial

pattern have been rejected or deemed insufficient due to

the aforementioned biological limitations, leaving the

interpretation of spatial patterns in the realm of

suggestion or impossibility rather than inferential

determination (Phillips and MacMahon 1981, Lepš

1990, Real and McElhany 1996, Jeltsch et al. 1999,

Jolles et al. 2002, Molofsky et al. 2002, Fortin and Dale

2005). We propose that these apparent biological

limitations are in part due to two analytical issues: (1)

the spatial statistical hypotheses used had limited model

precision, i.e., use of the spatial-statistics toolbox that

was limited to relatively vague pattern description

(Grieg-Smith 1961, Pielou 1962, Kershaw 1973, Phillips

and MacMahon 1981, Real and McElhany 1996); and

(2) studies used spatial analysis in an inductive

description mode and not in a deductive model

comparison mode (e.g., Haase et al. 1997, Jeltsch and

Moloney 2002, Borcard et al. 2004; numerous examples

in Dale [1999] and Fortin and Dale [2005]) (Fig. 1: left

oval). Since the aim of our paper is to demonstrate the

idea that process can be at least partly understood by

pattern, we do not spend time reviewing spatial-pattern

analysis (see Cressie [1993], Dale [1999], and Fortin and

Dale [2005] for this purpose) nor do we critique the

spatial-pattern analysis literature in the past. Instead, we

elaborate on previous inference limitations perceived by

authors in light of the two analytical issues identified

above.
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Examples of the first issue, that pattern analysis may

have been insufficiently precise to gain strong inference

on process, are those that examine relationships between

inter-plant distance and plant size (Pielou 1962, Fowler

1986, Biging and Dobbertin 1995, Briones et al. 1996,

Kikvidze et al. 2005) or those asking whether individuals

are clustered or random using a spatial-point pattern

analysis (e.g., Barbour 1969, Ripley 1976, Phillips and

MacMahon 1981). The limitations with pattern analysis

were often attributed to the imprecision of the biological

process (Phillips and MacMahon 1981), or to the

possibility that multiple processes may be the cause of

a single spatial pattern (Real and McElhany 1996). The

longstanding question about whether competition drives

desert shrub occurrence, for example (Fonteyn and

Mahall 1981, Phillips and MacMahon 1981), has been

recently revisited using a sequence of alternative models

that were more sophisticated than simple clustering or

complete spatial randomness (for some specific scale),

thereby quantifying the relative support for competition

and dispersal processes (Schurr et al. 2004). In the case

of multiple processes creating single patterns, we cannot

reexamine the particular data set as used by Real and

McElhany (1996), but dispersal of disease has been

approached successfully in an aquatic system (Jolles et

al. 2002), demonstrating that it is possible. We note also

that a spatial pattern has numerous features, including

scale, intensity, autocorrelation, clustering, and variabil-

ity, that can each be addressed with precision. If a study

only examines general notions of scale (e.g., larger,

small, fine), the inference will be weaker than if precise

notions of scale are used (e.g., the pattern resulting from

the process of interest must be 1–4.5 m). Thus, the

spatial pattern of a phenomenon can be simultaneously

characterized by multiple features, such as a combina-

tion of a precise scale and spatial correlation structure

(e.g., Fajardo and McIntire 2007).

There are numerous examples of the second analytical

issue where the links between pattern and process were

deemed insufficient to gain good inference because of the

inductive approach to spatial analysis used (Anderson

1971, Borcard et al. 2004, Kikvidze et al. 2005). In these

and other cases there were implicit or explicit statements

(e.g., Borcard et al. 2004, Paoli et al. 2006) that

correlation does not imply causation and that processes

can only be deduced via experimental manipulation

(Levin 1992, Silvertown and Wilson 1994). We now

know such formulations are at best incomplete, and the

recent emphasis on a priori model comparisons partly

addresses this problem (Burnham and Anderson 2002).

Furthermore, numerous statistical tools can aid in

revealing this correct specification, including using

biologically inspired neutral models (e.g., see Olden et

al. 2001, Broquet et al. 2006) and structural-equation

models (e.g., McIntire [2004]).

In a previous attempt to link spatial patterns and

ecological processes in a general framework, Jeltsch et

al. (1999) explicitly proposed three steps to detect

underlying processes in nature from a spatial pattern:

(1) characterization of the spatial pattern; (2) develop-

ment of hypotheses about the underlying processes

generating the observed pattern; and (3) evaluation of

the hypotheses (experimental or modeling mediated). A

similar a posteriori mode is presented in Fortin and Dale

(2005: Fig. 1.1).

APPROACH

Our framework constitutes an enhanced version of

these previous attempts and we place it within the

context of scientific inference alongside other deductive

methodologies (Fig. 1). Thus, we diverge from Jeltsch et

FIG. 1. Our proposed framework within the contexts of inductive, deductive, and simulation approaches to description and
prediction for spatial phenomena and ecology in general. The black arrows show our space-as-a-surrogate framework within the
deductive approach, alongside experimentation and modeling by parameterization of processes. The black arrows outside of the
central oval indicate sources of ecological knowledge. Rectangular boxes indicate where we confront our predictions with data. The
arrow from Nature to Nature reflects strict empiricism.
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al.’s (1999) approach and propose that process and

pattern can be explicitly linked with precise statistical

analysis and rigorous ecological knowledge using a

priori reasoning. We present here the whole approach as

follows: (1) collect ecological understanding of spatial

structures, both conceptual and empirical, about the

system of interest (Fig. 1: black arrows outside of central

oval); (2) develop precise ecological, multiple a priori

hypotheses (or single hypothesis if the model structure is

known, but the intensity of pattern is not; Clark et al.

2004) that cover all reasonable relevant processes

affecting the system under study, and the development

of resulting spatial patterns these hypothesized processes

would create for such a system (including any neutral

hypotheses) (Fig. 1: upper part of central oval); and (3)

evaluate and select the best hypotheses using advanced

spatial-analysis techniques, parameter-precision (con-

strained parameters to biologically meaningful values),

and model-selection approaches (Fig. 1: lower part of

central oval). We next explain these three elements in

detail.

Ecological understanding of spatial structures

Both physical and biological variables in nature

display spatial patterns (Levin 1992, Legendre 1993,

Dale 1999, Legendre et al. 2002, Tuda 2007). One

explanation of this is that endogenous ecological

processes operate between neighboring individuals, thus

creating autocorrelation (Tilman and Kareiva 1997,

Lennon 2000, Stoll and Bergius 2005). The traditional

way of describing spatial pattern is based on the premise

that samples taken from nearby locations may be more

similar to each other than samples taken far apart, due

to some unmeasured factor that varies spatially (i.e.,

spatial autocorrelation) (Rossi et al. 1992, Cressie 1993,

Legendre 1993, Fortin and Dale 2005, Ives and Zhu

2006). This is a non-process-based description that

leaves spatial analysis in the inductive domain, and

may be overly static for numerous applications. Using a

more active mode of description, patterns of individuals’

distributions may be spatially autocorrelated because of

contagious biotic processes (e.g., dispersal, competition),

historical factors (e.g., disturbance; Leduc et al. 1992),

or spatially structured environmental predictors (e.g.,

soil carbon; Haining 1993, Legendre et al. 2004, Bellier

et al. 2007; MacKenzie et al. 2008). If we are unable to

easily measure these processes directly, a spatial pattern

will be evident in the raw data or in the model residuals.

These spatial structures can be used in our favor if we

conceive of them as active results of (or contributions to)

biological processes. Spatial autocorrelation, while often

seen as a data nuisance (i.e., observations’ dependency),

can become a great aid in our understanding of natural

systems (e.g., Dale 1999, Liebhold and Gurevitch 2002,

Keitt and Urban 2005).

A good knowledge of the system becomes crucial

when developing and stating hypotheses about the

ecological processes responsible for the phenomenon

under study. These hypothesized processes must be

translated into observable spatial patterns that need to

be identified and characterized quantitatively in an

accurate way. Translating these processes or underlying

causes of spatial dependence into spatial pattern is not

always straightforward. Below (see Examples) we

present six different examples where this translation

was achieved successfully and with great inferential gain.

Multiple a priori hypotheses

We have known for a long time that studies that

contain a single working hypothesis (including a single

null statistical hypothesis) are flawed for several reasons

(Chamberlin 1890, Hilborn and Stearns 1982, Anderson

et al. 2000). For example, we may only look at

ecosystems or subsystems where we know we can find

support for the hypothesis of interest, regardless of how

important it is to ecological systems in general (Johnson

1999). Furthermore, it is well known, though not

universally appreciated, that rejecting a hypothesis does

not confirm any particular alternative hypothesis

(Popper 1979) because innumerable unstated alternative

hypotheses might also be correct. Third, when data do

support a single hypothesis, we still do not know how

important that hypothesis is, compared to alternative

processes. Thus, we may find support for the phenom-

enon of interest without being aware of its importance in

the system.

In contrast, proposing several alternative hypotheses

that could explain an ecological phenomenon before a

project gets underway (hypothetico-deductive reasoning)

can promote inference by reducing spurious model fits

(Burnham and Anderson 2002). To illustrate, predicting

an ecological outcome based on hypothesized function-

ing of the system (i.e., a priori hypothesis) is akin to

betting on the horse race before it starts. Success is

unlikely due to fortuitous idiosyncrasies. In contrast,

explaining why a horse won after the race is over (i.e., a

posteriori explanation) will always be correct, but may be

prone to idiosyncrasies of that particular race (e.g., the

faster horse fell). Good predictions of the next similar

situation are much less likely due to this hindsight bias.

Furthermore, it is best to generate several plausible and

reasonable hypotheses (Chamberlin 1890, Burnham and

Anderson 2002) because in an unmanipulated system,

correlations between predictor variables may cause a

hypothesis to appear good, when in reality it is a second,

correlated hypothesis that is actually driving the support

for the first hypothesis. If these hypotheses include

biological processes (i.e., not only empirical relation-

ships), then the inference about the functioning of the

system is maximized because causality in unmanipulated

systems is contained within the hypotheses, not within

the data analysis (Borcard et al. 2004).

Spatial analytical techniques

The objective of this section is not to provide a

comprehensive guide to spatial analyses in ecology (for
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this see Cressie [1993], Dale [1999], Fortin and Dale

[2005], and the 2002 special issue in Ecography [Volume

25, Issue 5 ]), but to highlight some key points about

spatial analyses in the context of using space as a

surrogate for unmeasured or unmeasureable processes.

Notably, the modern tools for spatial analysis allow

precise descriptions of the patterns (e.g., not just

‘‘clustered’’ or ‘‘not clustered’’). When field studies use

only a portion (e.g., point pattern) of the information

available in the spatial patterns, they are less likely to

discern the process–pattern link than if a more complete

analysis of the spatial pattern is performed (see

Examples, below). This occurs because, statistically

speaking, any residual variance from a model implies

model misspecification (Fotheringham et al. 2002).

From a biological perspective, this misspecification

may have structure and therefore information, if it is

anticipated. The portion of this residual variance that

can be identified as having spatial structure (Borcard et

al. 1992, 2004, Legendre 1993, Wagner and Fortin 2005)

(i.e., spatial dependence) is more useful than unstruc-

tured residual error (McIntire 2004). Since it may not be

physically, biologically, or logistically possible to specify

or even measure the perfect model for any particular

ecological system, it is reasonable to utilize this spatial

variance as part of the study (Keitt et al. 2002), rather

than attempting to eliminate it through a variety of

statistical tools.

Indeed, many recent studies in diverse fields (see

examples elaborated below) have utilized specific spatial

structures tied strongly with pertinent biological hy-

potheses to achieve a better understanding of their

systems (Desrochers and Fortin 2000, Lugon-Moulin

and Hausser 2002, Fang 2005, Fajardo and McIntire

2007). Furthermore, we can add precision to our

analysis of spatial scale; rather than simply discussing

‘‘scale’’ we can discuss ‘‘particular scales’’ (Wiegand et

al. 2007). For instance, if we were to look at the spatial

pattern of forest-tree growth using semivariograms, we

could quantify the spatial scale of the spatial pattern.

But this would not necessarily help us in understanding

which processes were driving the patterns at this scale.

If, on the other hand, we proposed that tree competition

acts between trees, and trees are growing at approxi-

mately 1–4.5 m spacing, then we would expect that there

should be a spatial pattern occurring at 1–4.5 m, if

competition is happening. We develop this further as an

example below. To enhance many analyses, using

marked analyses (Fortin and Dale 2005) (i.e., analysis

of the spatial pattern of a variable of interest, not just its

mere location in space) to assess continuous processes

(e.g., competition) even when there are only discrete

entities that experience it (i.e., plants) can be very

advantageous. Thus, we can examine continuous pro-

cesses (e.g., growth increment, xylem pressure, dispersal

distance, bird song, mortality rate) sampled at the

individual’s spatial location, with much greater precision

than if we analyze it as a discrete process.

EXAMPLES

Here we describe six examples from recent literature

where several alternative, a priori spatial pattern models
were merged with biological understanding of the
processes to gain insight into how the system under

study works. With these six examples, we attempt to
show the diverse array of topics for which this approach

is useful, but we note that these are just a sample; there
are other studies, produced over a span of decades, that

have had similar success using this approach (e.g.,
Bachacou and Decourt 1976, Franklin et al. 1985, Barot

et al. 1999, Wiegand et al. 2000, Jolles et al. 2002, Schurr
et al. 2004).

Example 1: forest-stand dynamics

Inter-tree competition is often thought of as the
primary driver of forest-stand dynamics (Hara 1984,

Bullock and Burkhart 2005). It is clear, however, that
microsite will have an important impact on stand

dynamics as well. Empirical studies have repeatedly
shown that spatial and size distributions of trees in a

community bear the fingerprint of these factors (Bach-
acou and Decourt 1976, Bullock and Burkhart 2005). It
is difficult to directly measure these two processes

simultaneously, as they dynamically affect individual
growth and development of a forest stand. In a recent

study conducted in Pinus ponderosa plantations in
Patagonia, Chile, we detected and separated these two

confounded factors using semivariograms and a priori
hypotheses about the functional form of the process

linked with precise a priori parameter ranges of these
semivariogram models (Fig. 2) (Fajardo and McIntire

2007). We used the following knowledge of the
biological system to develop our analysis. Competition

in early developing forests will be predominantly
asymmetrical, with taller trees shading adjacent shorter

trees (Weiner 1990). As a result of this asymmetric
relationship, immediate tree neighbors will have a

greater difference in growth rates than between any
given tree and the average tree of the site. Also, two trees

that are separated by a third tree will have more similar
growth rates to each other than the intermediate

neighbor. Thus, the proposed spatial structure to
represent this pattern would be a dampening wave of
growth rates through space from all trees, but limited to

a tight range of spatial scale for the sill parameter in the
semivariogram (i.e., the scale of tree–tree neighbor

distance, 1–4.5 m, in this example). The dampening
effect will be due to overlapping competitive signals

from all trees. As an alternative hypothesis, microsite
variability will create the more generally observed

positive spatial autocorrelation, represented by an
increasing semivariogram model. A third hypothesis is

that growth is random, represented by a nugget semi-
variogram model. We added a nested function combin-

ing the competitive and microsite processes to allow for
the possibility that both would be acting simultaneously

(see Fig. 2). Using tree cores collected at the base of the
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trees, we evaluated the support for these alternative

hypothesized processes, solely by the spatial pattern of

growth through the forest stands.

We found that the processes affecting forest growth

through the first 20 years is dynamic through time. Our

general observed pattern began with early random

growth, followed by microsite-mediated growth, fol-

lowed by competition-mediated growth. There were

variations on this sequence, where more dense sites

showed competitive interactions earlier and less produc-

tive sites showed later competition as trees did not fill

space as fast. We were able to test the approach by

successfully identifying several events in which, inde-

pendent of our work, some of the trees were removed

from the forest with the goal of removing competitive

interactions; we detected this in our analysis through a

corresponding reduction in the importance of the

competitive effect.

Example 2: invasion of exotic trees

Site-level mechanisms for invasion of Acer platanoides

into native forests of the northeastern United States are

not known. In general, invasion mechanisms can act

either directly (competition) or indirectly (altering

ecosystem processes) on the invaded community (Levine

et al. 2003). In an attempt to uncover the mechanisms

for this invasion, Fang (2005) presented graphs of

population size structure vs. distance from a forest edge

with a priori hypotheses linking spatial patterns to

particular combinations of data (Fig. 3). For active

invasion, the size–distance graph of the invader should

have a negative upper slope, and the native species

should have a flat upper slope and either a negative slope

(i.e., invader preventing native-species understory re-

cruitment) or flat lower slope (i.e., invader cutting off

edge-related native-species recruitment).

Results from this study supported the active-invasion

model. A. platanoides individuals showed a strong

negative upper slope in the size–distance graphs, and

the dominant native species showed negative slopes of

the lower slope in the size–distance graphs. In addition to

the result that there was no correlation between A.

platanoides presence and overstory mortality, these

findings are inconsistent with the gap or space-filling

hypothesis. This support for the a priori spatial

hypothesis representing a competitive mechanism for

invasion, rather than a space-filling random model, helps

to elucidate the mechanisms underlying the invasion.

Example 3: landscape effects on movement

Describing connectivity in landscapes has been a key

aspect of research in landscape ecology (Wiens 2001).

Using biological assays allows us to understand the

effective connectivity (McIntire et al. 2007) of a

landscape, which can be more relevant than connectivity

measured by various objective indices. Broquet et al.

(2006) used two alternate a priori models of American

marten (Martes americana) movements in logged and

unlogged boreal forests in Ontario, Canada. To examine

the effective connectivity, they built a model represent-

ing a least-cost path across the logged and unlogged

landscapes, and contrasted the support of this model

(reproduced here as Fig. 4) with a null Euclidean-

distance model. Using known marten biology and field

observations, they created these least-cost paths by

assigning a high friction value to openings (e.g., from

logging and roads) and a low friction value to closed

forest. Least-cost paths between individuals were

calculated, resulting in an estimate of the effective

distance between individuals.

Results showed that in the unlogged landscape,

effective distances and Euclidean distances were similar,

and correlated significantly with genetic distances. In the

logged landscape, genetic distance did not correlate with

Euclidean distance, but it did correlate with effective

distances. This indicates that the movement of individ-

uals and gene flow through the logged landscapes was

not the linear, shortest path movement. Rather,

movement was along a path that is better estimated by

a least-cost path that avoids openings.

Example 4: dispersal of freshwater fish

Freshwater-lake systems present various possible

dispersal processes creating different levels of connec-

FIG. 2. The five theoretical semivariograms models [(1)
nugget (nug), (2) spherical (sph), (3) exponential (exp), (4) wave,
and (5) nested (a mixture of wave and exponential)], related to a
corresponding set of biological processes [(1) random processes,
(2 and 3) microsite processes, (4) competition among trees, and
(5) a combination of competition and microsite processes] that
were fitted to the spatial pattern of annual tree rings in four
young, even-aged ponderosa pine plantations in Patagonia,
Chile (Fajardo and McIntire 2007). These spatial signatures
were tied, a priori, to competition and microsite heterogeneity,
thereby acting as a surrogate for these biological processes.
(Note: semivariance is half the variance of the distance h
between each point and all points separated from it by the
distance given on the x-axis.) (The figure is reproduced from
Fajardo and McIntire [2007: Fig. 1]; used with permission.)
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tivity via rivers and streams (Olden et al. 2001). For

example, elevation changes along water courses may

modify the ability of fish to move between lakes.

Furthermore, lakes may be relatively easy to cross,

compared to moving along streams. Olden et al. (2001)

represented these two hypotheses as part of a series of

eight a priori hypotheses corresponding to different

processes of dispersal for freshwater fish through a

network of lakes in south central Ontario, Canada.

Using a Procrustean approach, they represented these

alternative movement hypotheses as alternative distance

matrices to be used in the analysis. They included

straight-line Euclidean-distance measures as a hypothe-

sis representing a null model.

Results revealed a high concordance between patterns

in fish community composition and lake isolation. In a

few instances, community composition of a lake showed

greatest concordance with straight-line distances. But in

most cases, alternative isolation indices, from among the

set of alternative processes proposed, demonstrated how

the fish communities were established. Some lakes had a

fish community that showed strongest concordance with

watercourse distance, regardless of number or size of

lakes, indicating that fish movement to those lakes

depended upon the linear distance along the rivers and

streams connecting them. Fish communities in lakes that

FIG. 4. Least-cost movement path connecting the location
of two individuals of American marten through a heteroge-
neous landscape (from Broquet et al. 2006). The length of this
movement path and that of a simpler Euclidean distance were
compared to the genetic distance separating these individuals to
understand movement. (The figure is reproduced from Broquet
et al. [2006: Fig. 2a]; used with permission.)

FIG. 3. A priori hypotheses (graphically depicted) relating variable X (distance from invasion origin) and variable Y (e.g., size,
density) for exotic- and native-species recruitment (Fang 2005). For active invasion, the size–distance graph of the invader should
have a negative upper slope, and the native species should have a flat upper slope and either a negative slope [i.e., invader
preventing native-species understory recruitment: (A) and (C) co-occur] or flat lower slope [i.e., invader cutting off edge-related
native-species recruitment: (A) and (D) co-occur]. (The figure is reproduced from Fang [2005: Fig. 1]; used with permission.)
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showed greatest concordance with elevation-adjusted

water-course distances indicated that elevational change

created a component of lake isolation.

Example 5: natural-disturbance boundaries

Understanding why natural disturbances stop is a

much-overlooked part of natural disturbance dynamics

research. McIntire (2004) attempted to understand the

processes responsible for stopping two types of natural

disturbances, wildfires and mountain pine beetle out-

breaks, using spatial signatures of disturbance effects at

their boundaries in south-central British Columbia,

Canada. Here, it was proposed that there could be

site-level factors responsible for stopping the distur-

bance spread as well as non-site factors such as weather

(or fire suppression efforts in the case of wildfire) or

beetle dispersal limitation. Using a priori structural

equations representing alternative models for distur-

bance stopping, estimates were made of the correspon-

dence between site-level descriptors (e.g., aspect, tree

basal area, tree species, and tree mortality). Since these

boundaries would have a monotonic spatial structure in

tree mortality (dead trees to live trees), it was proposed

that if this spatial structure was relegated to an indirect

effect through site-level factors, then exogenous factors

(e.g., weather) could be removed as likely forces

stopping the disturbance. Conversely, if a direct effect

of spatial pattern across the boundaries remained, then

the disturbance stopped at least partially due to external

forcing.

Results showed that about half of the mountain pine

beetle outbreaks stopped solely due to site-level factors.

This indicated that insect-dispersal limitation was not a

driver of the outbreak stopping. In these cases,

landscape structure was responsible for stopping the

disturbances. All seven fire boundaries, on the other

hand, were stopped at least partially from non-site

factors (most likely weather or fire suppression) in

addition to site-level factors. A historical examination of

the weather conditions that occurred toward the end of

the fire could potentially isolate fire suppression as the

primary external driver of the fire stopping (though this

was not done in the study).

Example 6: distribution of plant species in tropical forests

The determination of what drives tropical-plant

species distributions has been a debated topic in plant

ecology. Recently, Tuomisto et al. (2003) tested three

alternative hypotheses about the drivers of plant species

distributions in western Amazonian tropical forests.

They considered inventories of plant groups with

contrasting dispersal modes: pteridophytes (ferns in

general) and the Melastomateceae (shrubs and small

trees). These two groups provide ‘‘independent test

cases’’ for determining the relative importance of distinct

hypotheses explaining plant species distribution. They

contrasted three models for floristic similarities among

sites: dispersal limitation based on neutral theory

(Hubbell 2001), uniform distribution (i.e., a null

hypothesis), and local environmental determinism (as a
contrast to neutral theory and support to the regener-

ation-niche theory). They tied each of these potential
processes to specific predictions a priori using partial

Mantel tests.
In their analysis they found no support for the

uniform model but did find support for each of the
other two hypotheses. Using relative measures of
support allowed the authors to quantify the relative

influence of each supported process. They found that
environmental determinism explained more of the

variation in floristic differences than dispersal limitation,
where the latter process was supported mostly for the

Melastomataceae, among which many species have
known dispersal limitations (e.g., animal dispersed).

DISCUSSION

Cautions

It is possible that this ‘‘space as a surrogate’’ approach
will not work in all situations. Sometimes the process–
pattern link will be too diffuse. In other cases, the

residual spatial structure may incorporate too many
unmeasured phenomena. But it is important to distin-

guish imprecise spatial analysis (analysis issues) from
imprecise spatial patterns (biological issues), and we

believe these two types of precision have regularly been
confounded. As with all a priori approaches, the success

of the study will only be as good as the biologically
derived a priori hypotheses. We note that many processes

can act at scales much larger than they may appear. For
example pollen dispersal, which is predominantly limited

to relatively short distances, has been shown to have
effects at scales much larger than the distance that pollen

can travel (Satake and Iwasa 2002). Under certain
circumstances it may be important to simulate the

potential processes concurrently with confronting the
hypotheses with data, as the translation between
hypothesis and spatial pattern will not always be clear.

The construction of multiple hypotheses is not always

straightforward or simple, i.e., there may be difficulties
in making them competitive instead of compatible
(Hilborn and Stearns 1982). We think, however, that

this is primarily an analysis-precision problem rather
than a hypothesis creation problem, as we have

demonstrated here. Furthermore, the inclusion of
hypotheses that correspond to process interaction

should be promoted since this represents a common
phenomenon in nature (see Example 1, above, for

competition and microsite interaction).
Lastly, one argument against our approach would be

that science works as an iterative process, where a priori
predictions are just the result of a previous study’s

conclusion. Thus, the knowledge of the initial spatial
patterns would be a relevant and significant first step (as

recommended by Jeltsch et al. [1999] and Fortin and
Dale [2005]) before the determination of any causal

factor on spatial patterns. First, we note that where
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exploration and hypothesis creation are the objectives of

the study (i.e., determination of spatial patterns), spatial

approaches may be very powerful in accomplishing these

objectives (see examples in Perry et al. [2002], Fortin and

Dale [2005]). Second, the determination of spatial

patterns constitutes an essential part of our approach,

therefore this argument is not necessarily contradictory.

Conclusions and future directions

To move the analysis of spatial pattern from inductive

description to deductive inference, it is important to

reflect a priori about all the potential or probable

underlying responsible processes behind the spatial

patterns. Rather than ask ‘‘What are the spatial

patterns?’’ we can work within an inferential mode:

‘‘What are the expected underlying processes responsible

for the observed spatial structures?’’ Which processes

can we measure directly and which ones will be

impossible to measure? For those that we cannot

measure, can we establish a precise and unique spatial

signature? Incorporating these particular spatial signa-

tures into a priori hypotheses and testing their support

with data while utilizing precise spatial statistical

analyses can thus provide us stronger inference for

understanding ecological systems. From the studies

presented here, we propose that spatial patterns can be

usefully decomposed into underlying processes using

multiple, strong a priori hypotheses linked to spatial-

pattern creation. These studies could not have been done

using more traditional inferential approaches because

they require manipulations that were not possible.

Similarly, using the intact system (rather than a

manipulated system) these studies addressed the actual

relevance in the system of an underlying process, instead

of its potential influence or its presence/absence.

Furthermore, experimental manipulations may elimi-

nate feedback processes, thus giving the often-false

appearance of a simple system with good inference

(Hilborn and Stearns 1982).

The connection between space and process is in a

period of rebuilding after being rejected by numerous

authors over the past 50 years. With emphasis on a

priori hypotheses tied to processes and more precise

statistical analyses, we are dramatically enhancing the

inference gained from the pervasive links between

process and spatial patterns. Tying processes to other

statistical analytical tools, such as wavelets, local-

pattern analysis, local geostatistics, and many others,

has enormous potential for enhancing our understand-

ing of the processes underlying pattern generation and

change. Finally, we have focused on spatial patterns in

this paper because of the prevalence in the ecological

literature; however, the identical procedure and inferen-

tial gains can be done on temporal data patterns.
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