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 28 

Abstract 29 

The CO2 fertilization hypothesis stipulates that rising atmospheric CO2 has a direct 30 

positive effect on net primary productivity (NPP), with experimental evidence suggesting 31 

a 23% growth enhancement with a doubling of CO2. Here, we test this hypothesis by 32 

comparing a bioclimatic model simulation of NPP over the 20th century against tree 33 

growth increment (TGI) data of 192 Pinus banksiana trees from the Duck Mountain 34 

Provincial Forest in Manitoba, Canada. We postulate that, if a CO2 fertilization effect has 35 

occurred, climatically driven simulations of NPP and TGI will diverge with increasing 36 

CO2. We use a two-level scaling approach to simulate NPP. A leaf-level model is first 37 

used to simulate high-frequency responses to climate variability. A canopy-level model 38 

of NPP is then adjusted to the aggregated leaf-level results and used to simulate yearly 39 

plot-level NPP. Neither model accounts for CO2 fertilization. The climatically driven 40 

simulations of NPP for 1912−2000 are effective for tracking the measured year-to-year 41 

variations in TGI, with 47.2% of the variance in TGI reproduced by the simulation. In 42 

addition, the simulation reproduces without divergence the positive linear trend detected 43 

in TGI over the same period. Our results therefore do not support the attribution of a 44 

portion of the historical linear trend in TGI to CO2 fertilization at the level suggested by 45 

current experimental evidence. A sensitivity analysis done by adding an expected CO2 46 

fertilization effect to simulations suggests that the detection limit of the study is for a 47 

14% growth increment with a doubling of atmospheric CO2 concentration.   48 

 49 

Key words  CO2 enhancement, dendrochronology, process-based model, boreal forest, 50 

jack pine 51 
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 52 

1. Introduction 53 

The CO2 fertilization hypothesis stipulates that rising atmospheric CO2 has a positive 54 

effect on net primary productivity (NPP) due to increasing availability of carbon, a 55 

limiting factor for the photosynthesis of C3 plants [Huang et al., 2007]. The concept of 56 

CO2 fertilization has a long experimental history and has been well demonstrated under 57 

laboratory or controlled conditions for a variety of C3 vascular plants, including trees [see 58 

reviews by Norby et al., 1999; Ainsworth and Long, 2005; Huang et al., 2007; Körner et 59 

al., 2007; Wang, 2007; Prentice and Harrison, 2009]. In a landmark paper, Norby et al. 60 

[2005] have reported on the most extensive experiments on this topic involving multi-61 

year free-air CO2 enrichment (FACE) in coniferous and deciduous plantations. In the four 62 

sites under study, they have found a 23% enhancement of NPP sustained over multiple 63 

years following a doubling of pre-industrial CO2 concentrations. Given the current weight 64 

of experimental evidence, modellers have been including CO2 fertilization effects in their 65 

simulations of past and future forest productivity [e.g. Rathgeber et al., 2000, 2003; Chen 66 

et al., 2000; Balshi et al., 2007; Su et al., 2007; Peng et al., 2009], generally resulting in 67 

projected increases in forest growth under future atmospheric CO2 concentrations. The 68 

impact of this type of inclusion is important as predictions of forest carbon sequestration 69 

dynamics are increasingly coupled to global circulation models and CO2 emission 70 

scenarios [e.g. Notaro et al., 2007; O'ishi et al., 2009].   71 

In spite of the current wealth of experimental evidence on CO2 fertilization of tree 72 

growth, there is still some doubt as to the actual realization of this effect under natural 73 

conditions. Körner et al. [2005], in a FACE experiment in a mature deciduous forest, 74 

have found no lasting growth stimulation by CO2 enrichment after 4 years of treatment. 75 
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Caspersen et al. [2000], in a study of long-term results from forest sample plots in the 76 

eastern United States, have found only a modest increase in tree growth over the past 77 

century. And recently, Norby et al. [2008, 2009] reported that nitrogen limitation was 78 

causing a dramatic reduction in growth enhancement in their hardwood FACE 79 

experiment from the 23% reported in Norby et al. [2005] to a current value of 9%. 80 

Evidences of site fertility restrain on carbon sequestration were also found by Oren et al. 81 

[2001] in their study of mature pine forests exposed to elevated atmospheric CO2. In their 82 

global simulations of CO2-enhancement on NPP, Hickler et al. [2008] concluded that 83 

current FACE results do not apply to boreal forest, because of the strong temperature 84 

dependence of the relative affinity of the carboxylation enzyme Rubisco for CO2 and O2. 85 

The predominantly colder temperatures of boreal forests compared with FACE 86 

experiments would limit the CO2 effect, with a simulated increased of NPP of about 15% 87 

under a doubling of atmospheric CO2 [Hickler et al., 2008]. These reports raise the 88 

question of the importance of CO2 fertilization in natural forest environments where tree 89 

growth is limited by other factors.  90 

As mentioned above, CO2 fertilization effects on growth have already been 91 

included in many process-based models. Such models serve as direct links between the 92 

climate and tree growth [Hunt et al., 1991; Landsberg and Waring, 1997; Rathgeber et 93 

al., 2000; 2003; Misson et al., 2004] or ecosystem carbon dynamics [e.g. Balshi et al., 94 

2007; Peng et al., 2009]. The challenge with any such inclusion, however, lies with the 95 

verification of the modeled change in growth against actual field measurements of 96 

realized growth. Because real-world CO2 enhancement is not a step function, but rather a 97 

long-term monotonic increase, the signal it generates in tree growth is not easily 98 
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detectable. The signal is certainly far weaker than the large inter-annual variations caused 99 

by climate variability [D’Arrigo and Jacoby, 1993] and may be within the uncertainties 100 

related to forest inventory data [Joos et al., 2002]. In addition, global temperatures have 101 

also been increasing, along with atmospheric nitrogen deposition in some parts of the 102 

globe, further confounding the effect of CO2 fertilization. Finally, the response of plants 103 

to CO2 is also affected by the possible down-regulation of photosynthesis [e.g. Eguchi, 104 

2008; Crous et al., 2008]. All these issues make the detection of CO2 fertilization effects 105 

particularly challenging.  106 

Here, we test the CO2 fertilization hypothesis by comparing tree growth increment 107 

data from 1912 to 2000 with simulation results using a simulator that does not 108 

incorporate CO2 fertilization effects, and is empirically adjusted to the current CO2 109 

growth environment through field measurements of photosynthesis. We postulate that, in 110 

the event that a CO2 fertilization effect has occurred, climatically driven simulations of 111 

forest productivity will show increasing divergence with the measurement record over 112 

time as the atmospheric CO2 increases [Graumlich, 1991; Jacoby and D’Arrigo, 1989; 113 

1997; Rathgeber et al., 2000].  For this purpose, we used tree-ring increments of 192 jack 114 

pine (Pinus banksiana Lamb.) trees from the closed-canopy boreal forest of Duck 115 

Mountain Provincial Forest (DMPF) in Manitoba, Canada. Growth increment data were 116 

transformed into a tree growth index (TGI) using the regional curve standardization 117 

technique, such that low-frequency signals were retained in the data. The final tree-ring 118 

chronology extends from 1717 to 2000. We used a two-level scaling approach to achieve 119 

estimates of forest productivity for the period of 1912 to 2000. At the finest scale, a leaf-120 

level model of photosynthesis (FineLEAP) was used to simulate canopy properties and 121 
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their interaction with the variability in radiation, temperature and vapour pressure deficit. 122 

Then, the StandLEAP model, a top-down plot-level model of forest productivity, was 123 

used to simulate landscape-level productivity over the 20th century. The two levels of 124 

simulation are linked functionally as parameters of the coarser models are estimated from 125 

aggregated simulation results of the finer model, but neither model accounts for CO2 126 

fertilization. Finally, the detection limit of our approach was investigated through a 127 

sensitivity analysis in which an expected CO2 fertilization was included in StandLEAP 128 

simulations via a response function.  129 

 130 

2. Study area 131 

The study took place in the DMPF (51°40′N; 100°55′W), which covers approximately 132 

376,000 ha (Fig. 1). Duck Mountain is located within the Boreal Plains ecozone, a 133 

transition zone between the boreal forest to the north and the aspen parkland and prairie 134 

to the south, and is topographically part of the Manitoba Escarpment, which is 135 

characterized by a higher elevation compared with the surrounding plains (300–400 m 136 

above sea level, with highest point at 825 m). Pure to mixed deciduous and coniferous 137 

stands, primarily composed of trembling aspen (Populus tremuloides Michx.) and white 138 

spruce (Picea glauca [Moench] Voss), constitute about 80% of the DMPF. Stands 139 

dominated by black spruce (Picea mariana [Mill.] BSP) and jack pine constitute about 140 

14% and 6% of the area, respectively, and occur most commonly in the central, higher 141 

elevation regions of the DMPF. The DMPF has a mid-boreal climate with predominantly 142 

short, cool summers and cold winters. At lower elevation Swan River (52°03′N; 143 

101°13′W, elevation: 346.6 m asl), mean monthly temperatures ranged from –18.2°C in 144 
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January to 18.1°C in July for the reference period of 1971–2000. Average total annual 145 

precipitation was 530.3 mm, with most precipitation falling as rain between May and 146 

September.  147 

 148 

3. Data 149 

3.1. Tree-ring measurements 150 

During the summers of 2000 and 2001, the DMPF was surveyed with the objective of 151 

reconstructing fire history [Tardif, 2004]. The DMPF was systematically divided into 152 

UTM grids (10 x 10 km) and sites were sampled within each grid based on accessibility. 153 

Detailed information on data collection is found in Tardif [2004]. For the current study, 154 

we analysed a subset of jack pine cores (2 radii/tree) and stem cross-sections consisting 155 

of 192 living and dead trees collected from 70 sampling sites located within 20 UTM 156 

grids. Only trees with complete ring measurements from pith to the last year of growth 157 

were included, which explains the lower sample replication compared to earlier studies 158 

[i.e., 291 trees in that of Girardin and Tardif, 2005]. The majority of samples were 159 

collected in the uplands in stands dominated by jack pine and black spruce. Each of the 160 

cores and sections were dried, sanded and cross-dated using the pointer-year method 161 

[Yamaguchi, 1991]. Annual growth increments were measured from the pith to the 162 

outermost ring at a precision of 0.001 mm using a Velmex measuring stage coupled with 163 

a computer, and both cross-dating and measurements were statistically validated using 164 

the COFECHA program [Holmes, 1983]. The final dataset consisted of 332 ring-width 165 
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measurement series. Ring-width measurements were recorded for a period extending 166 

from AD 1717 to AD 2000.  167 

 168 

3.2 Meteorological data 169 

Meteorological data used as input for the bioclimatic model were monthly means of daily 170 

maximum and minimum temperatures (from the Birtle [1905−1998] and Dauphin 171 

[1904−2003] meteorological stations; Fig. 1) and total monthly precipitation data (from 172 

the Birtle [1918−2000], Dauphin [1912−2003], and Russell [1916−1990] meteorological 173 

stations) from Vincent and Gullett [1999] and Mekis and Hogg [1999], respectively. Data 174 

were corrected by the authors for non-homogeneities associated with changes in 175 

instrumentation or weather station location. Regional climate data files were created by 176 

averaging data from all stations following the procedure described in Fritts [1976] 177 

(homogeneity testing, station adjustments for mean and standard deviation, and station 178 

averaging).  179 

 180 

3.3 Forest inventories 181 

Biometric information was obtained from DMPF temporary sample plots (TSP) of the 182 

Forest Lands Inventory initiated by Louisiana Pacific Canada Ltd.–Forest Resources 183 

Division and Manitoba Conservation–Forestry Branch. Necessary information for driving 184 

the StandLEAP bioclimatic model includes soil texture and forest stand properties (forest 185 

composition and biomass estimates). For simplicity, we only modelled forest stands 186 

classified as “pure” jack pine stands (i.e., where more than 75% of plot basal area was 187 
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contributed by jack pine). A total of ten plots (out of 1317) met the 75% criterion while 188 

also having all the necessary information for modelling purposes (auxiliary material 189 

Table S1). For each of these TSPs, aboveground biomass was estimated using the 190 

national biomass equations of Lambert et al. [2005]. These functions were applied to 191 

each tree, and the individual tree biomass values were summed to estimate stand-level 192 

biomass density (Mg ha
-1

) in each TSP.  193 

 194 

3.4 Atmospheric CO2 data 195 

We used annual average of the atmospheric concentrations of CO2 reconstructed from ice 196 

cores [Etheridge et al., 1996] and recorded at Mauna Loa observatory since 1953 197 

[Keeling et al., 1982]. The CO2 concentration increased from 300 ppmv in 1910, to 317 198 

ppmv in 1960, and to 370 ppmv in 2000.  199 

 200 

4. Methods 201 

4.1 Development of the tree growth index (TGI) 202 

All ring-width measurements were detrended using the regional curve standardization 203 

technique [Esper et al., 2003] in order to eliminate noise caused by site-related effects 204 

(e.g. competition and self-thinning) and biological effects (e.g. aging). This approach has 205 

the potential to preserve the evidence of long time scale forcing of tree growth [see 206 

reviews by Esper et al., 2003 and Briffa and Melvin, in press] as it scales ring-width 207 

measurements against an expectation of growth for the appropriate age of each ring (Fig. 208 
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2). We first aligned the 332 measurement series by cambial age and calculated the 209 

arithmetic mean of ring width for each ring age. We then created a regional curve (RC) 210 

by applying a negative exponential smoothing [Cook and Kairiukstis, 1990] to the age 211 

series of arithmetic means (Fig. 2). It is assumed that this RC created from the means of 212 

ring width for each ring age describes the functional form of the age-related growth trend. 213 

Note that our conclusions were insensitive to the use of other types of smoothing [e.g. the 214 

‘Hugershoff’ or spline smoothing; Cook and Kairiukstis, 1990] or to truncation of the 215 

measurement series by removal of the juvenile period (first 15 to 20 years of data) and 216 

downsampling of age cohorts (auxiliary material Figs. S1, S2 and S3). Next, we divided 217 

each one of the original 332 ring-width measurement series by the RC value for the 218 

appropriate ring age to create standardized series. These departures from the RC are 219 

interpreted as departures related to climate variability or some other induced forcing (e.g. 220 

insect herbivory). Finally, the 332 standardized series were realigned by calendar year 221 

and averaged using a bi-weight robust mean to create the jack pine tree growth index 222 

(TGI). TGI error was estimated by bootstrapping the standardized series and collecting 223 

the two-tailed 95% confidence interval from the distribution of the bootstrapped means. 224 

Robustness of the final jack pine chronology was assessed using a 30-year ‘moving 225 

window’ approach of the inter-series correlation, and of the expressed population signal 226 

(EPS) [Wigley et al., 1984]. The EPS is a measure of the degree to which the mean 227 

chronology represents the hypothetical perfect, noise-free, chronology. The EPS ranges 228 

from zero to one. A value of 0.85 has been tentatively suggested as desirable [Wigley et 229 

al., 1984]. Program ARSTAN (version 40c) was used for processing of tree-ring 230 

measurement series and for computation of statistics [Cook and Krusic, 2006]. 231 
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 232 

4.2 Modelling of forest productivity 233 

The bioclimatic model StandLEAP version 2.1 [Raulier et al., 2000; Girardin et al., 234 

2008] was used to simulate past forest productivity. StandLEAP is based on the 3PG 235 

model [Landsberg and Waring, 1997], and is a generalized stand model applicable to 236 

even-aged, relatively homogeneous forests. It is parameterized for individual species. 237 

Application of StandLEAP to any particular stand does not involve the use of error 238 

reduction techniques. We conducted monthly simulations of forest productivity 239 

(described below) for each of the ten temporary sample plots of the DMPF Lands 240 

Inventory (auxiliary material Table S1).  Monthly simulation outputs were summed to 241 

seasonal and annual values, and plots were averaged to a regional level. Sampling error 242 

was estimated by bootstrapping the simulations and collecting the two-tailed 95% 243 

confidence interval from the distribution of the bootstrapped means. 244 

In StandLEAP, absorbed photosynthetically active radiation (APAR, mol m
-2

 245 

month
-1

) is related to gross primary productivity (GPP, gC m
-2

 month
-1

) using a radiation 246 

use efficiency coefficient (RUE; gC/mol
-1

 APAR):  247 

 248 

[eq. 1] RUEAPARGPP ×= , 249 

 250 

where  251 

 252 

[eq. 2] nfffRUERUE ...21×= .  253 

 254 
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RUE  represents a species-specific mean value of RUE. The value of RUE differs among 255 

locations and through time because of the occurrence of environmental constraints on the 256 

capacity of trees to use APAR to fix carbon. Each constraint takes on the form of a 257 

species-specific multiplier (f1…fn) with a value usually close to unity under average 258 

conditions, but which can decrease towards zero to represent increasing limitations (e.g. 259 

soil water deficit), or increase above 1.0 as conditions improve towards optimum (e.g. 260 

temperature). Constraints related to mean maximum and minimum daily soil and air 261 

temperatures, vapour pressure deficit (VPD), monthly radiation, and leaf area index are 262 

expressed using a quadratic function:  263 

 264 

[eq. 3] 

2

1 






 −
+






 −
+=

x

xx

x

xx
f qxlxx ββ . 265 

 266 

where parameters βlx and βqx represent the linear and quadratic effects of the variable x on 267 

RUE and x  is the mean value of the variable over the period of calibration. The 268 

multipliers (f1…fn) account for non-linearity in time and space that cannot be accounted 269 

for by a constant value of RUE.  270 

Parameter values of eq. 3 for the fx multipliers are derived from prior finer-scale 271 

simulation results of canopy-level GPP and transpiration carried out using FineLEAP, a 272 

species-specific multi-layer hourly canopy gas exchange model [Raulier et al., 2000; 273 

Bernier et al., 2001, 2002]. In FineLEAP, the representation of photosynthesis is based 274 

on the equations of Farquhar et al. [1980] parameterized from leaf-level instantaneous 275 

gas exchange measurements, including the sensitivity of shoot photosynthesis to PAR, 276 
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temperature and VPD, and the characterization of the shoot physiological and light-277 

capturing properties with shoot age and surrounding average diffuse and direct light 278 

environment. Transpiration was computed using the energy balance approach of Leuning 279 

et al. [1995]. Sixty leaf angular classes were considered (five for the zenith and 12 for the 280 

azimuth).  281 

The FineLEAP model simulates canopies aspatially as layers of foliage of equal 282 

properties by using the frequency distribution of the leaf area by classes of shoot age. 283 

This aspatial approach rests on the strong relationship between leaf area per unit mass, 284 

and both the photosynthetic properties of the foliage and the average light climate 285 

impinging upon it [Bernier et al., 2001]. Ecophysiological and canopy structure data for 286 

jack pine were drawn mostly from the 1994 to 1996 BOREAS [Sellers et al., 1997] 287 

datasets for northern and southern study areas in old jack pine stands (98°37’19”W, 288 

55°55’41”N and 104°41’20”W, 53°54’58” respectively). These data are archived at the 289 

ORNL-DAAC [Newcomer et al., 2000]. FineLEAP simulations were repeated for each 290 

climate sequence and for a range of leaf area indices (2 to 8 m
2
/m

2
). Hourly values of 291 

transpiration, of GPP, and of environmental variables derived from or used in FineLEAP 292 

simulations were then rolled up into a monthly dataset. This new synthetic dataset was 293 

used to fit simultaneously eqs. 1 and 2, in which modifier variables were expressed as in 294 

eq. 3. The fit was performed in an iterative procedure with the gradual inclusion of 295 

modifier variables in a declining order of significance. Only variables that reduced the 296 

residual mean square error by more than 5% were retained [Raulier et al., 2000]. The 297 

atmospheric CO2 concentration was assumed to be constant at 350 ppmv.  298 
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Other basic climate influences on productivity are encapsulated in StandLEAP 299 

within the following functions. The multipliers used to represent the effect of soil water 300 

content (fθ) is as in Landsberg and Waring [1997], and that of frost (fF) is as in Aber et al. 301 

[1995]; both are limited to a maximum of 1.0. Bud burst and growth resumption in spring 302 

takes place after the accumulation of a certain heat sum above a specific base temperature 303 

[Hänninen, 1990]. Monthly APAR is adjusted throughout the growing season for changes 304 

in leaf area due to phenological development, as in the PnET model [Aber and Federer, 305 

1992].  306 

Computation of NPP and respiration fluxes by the StandLEAP model is done as 307 

follows. NPP (gC m
-2

 month
-1

) is computed monthly after partitioning respiration into 308 

growth (Rg, a fixed proportion of GPP) and maintenance (Rm) quantities and subtracting 309 

these from GPP: 310 

 311 

[eq. 4] )( mg RRGPPNPP +−= . 312 

 313 

Rm (gC m
-2

 month
-1

) is computed as a function of temperature using a Q10 relationship 314 

[Agren and Axelsson, 1980; Ryan, 1991; Lavigne and Ryan, 1997]: 315 

 316 

[eq. 5] ∑ −⋅= )(
10/)10(

1010
mT

rmmm QrMR   317 

 318 

where M is the living biomass of each plant component and rm10 is their respective 319 

respiration rate per gN at 10°C and Q10rm is the temperature sensitivity of Rm, defined as 320 

the relative increase in respiration for a 10°C increase in temperature. This function is 321 
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derived from the strong correlation between tissue nitrogen concentrations and plant 322 

maintenance respiration [Ryan, 1991]. Rm is calculated separately for stem sapwood, root 323 

sapwood, fine roots, and foliage. Similarly, net ecosystem productivity (NEP) is obtained 324 

from 325 

 326 

[eq. 6] hRNPPNEP −=  327 

 328 

where heterotrophic respiration (Rh) (gC m
-2

 month
-1

) is computed as 329 

 330 

[eq. 7] bT

h aeyR += 0  331 

 332 

where T represents monthly mean temperature. Values of parameters y0, a and b were 333 

obtained from a least-squares adjustment to monthly synthetic Rh data obtained by 334 

summing up simulations of half-hourly Rh computed as in Lloyd and Taylor [1994] and 335 

using the 10-year temperature records of the old jack pine stand obtained from the 336 

Fluxnet-Canada / Canadian Carbon Program Data Information System. 337 

The strength of this modelling approach is supported by the good performance of 338 

StandLEAP in a comparison of its simulation results with measurements by eddy-flux 339 

towers of GPP [data from Fluxnet-Canada, Margolis et al., 2006], ecosystem respiration 340 

(Re) and NEP from 2000 to 2006 in a 95-year-old stand in Saskatchewan, Canada (Fig. 341 

3). The model captured reasonably well the month-to-month variability in these variables 342 

(GPP-R
2
 = 0.92; Re-R

2
 = 0.92; NEP-R

2
 = 0.63; n = 84 months). The capacity of 343 

FineLEAP to simulate canopy-level gas exchanges has also been verified by comparing 344 
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hourly [Bernier et al., 2001] and daily [Raulier et al., 2002] measurements of plot-level 345 

transpiration to simulated values for two different stands of sugar maple (Acer saccharum 346 

Marsh.).  347 

 348 

4.3 Statistical analyses 349 

Tree-ring width measurements in boreal forests have an autocorrelation structure that can 350 

be expressed as an auto-regressive (AR) process of order p:  351 

 352 

[eq. 8] ttptt eIII +++= −− 11... φφ , 353 

 354 

where It are the tree-ring width measurements for year t, et are serially random inputs, and 355 

φi are the p autoregressive (AR) coefficients that produce the characteristic persistence 356 

seen in the tree rings [Monserud, 1986; Biondi and Swetnam, 1987; Cook and Kairiukstis, 357 

1990; Berninger et al., 2004]. A strong AR process will cause the tree-ring width 358 

measurements to be excessively smoothed, and vice versa. The AR process in tree rings 359 

reflects, amongst other things, how stored photosynthates are made available for growth 360 

in the following years. While this process can be mathematically described [Misson, 361 

2004], its process basis remains difficult to express quantitatively so that one could 362 

predict empirically how much carbon produced a given month or year should be allocated 363 

to the growth in the following years [i.e. Kagawa et al., 2006]. The autocorrelation 364 

function in TGI can indeed go beyond an AR1 process [Monserud, 1986].  365 

In contrast, there is no such year-to-year carry-over in yearly totals of simulated 366 

NPP by StandLEAP. In order to correct for this deficit and make the comparison of NPP 367 
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and TGI possible, the two series must be brought to a similar AR process. In this study, 368 

we estimated the AR process of the jack pine TGI and applied the AR equation 369 

parameters [Cook and Kariukstis, 1990] to the standardized yearly totals of simulated 370 

NPP, which were obtained by dividing annual NPP values by the long-term mean of NPP 371 

over 1912−2000. We hereafter refer to this new NPP series as the NPP
AR

 series. The 372 

application of this transformation to NPP does not violate the assumption of 373 

independence between the two datasets, but allows them to have a similar time-dependent 374 

(or ‘smoothing’) behaviour. Another approach would have been to remove the AR 375 

process in TGI through auto-regressive modeling (i.e. prewhitening). This, however, 376 

would have resulted in a significant loss of low-frequency changes in the TGI [for 377 

analyses of ‘prewhitened’ data, refer to Girardin and Tardif, 2005 and Girardin et al., 378 

2008]. The order of the autocorrelation process was determined using the Akaike 379 

Information Criterion (AIC) implemented in the program ARSTAN (version 40c) [Cook 380 

and Krusic, 2006]. 381 

Long-term linear changes in TGI, climatic, and simulated data were detected 382 

using least-squares linear regressions [von Storch and Zwiers, 1999]. Goodness of fit was 383 

described by the coefficient of determination (R
2
). Significance of the slope was tested 384 

against the null hypothesis that the trend is different from zero, using a variant of the t 385 

test with an estimate of the effective sample size that takes into account the presence of 386 

serial persistence (red noise bias) in data [von Storch and Zwiers, 1999; their sections 387 

8.2.3 and 6.6.8]. For those time-series having an autocorrelation structure expressed as an 388 

AR process of order greater than one (AR > 1), the significance of trends was evaluated 389 

using Monte Carlo simulations. In this analysis, 1000 random time series with similar 390 
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autocorrelation structure as the original data were tested for the presence of trends and 391 

99%, 95% and 90% percentiles of the coefficient of determination were collected and 392 

used as a criterion for testing against the null hypothesis. When necessary, data were 393 

ranked prior to analysis to satisfy the normality distribution requirement in model 394 

residuals [von Storch and Zwiers, 1999]. The period of analysis for this study was 395 

1912−2000 (e.g. limited to the earliest year of meteorological data and the latest year 396 

covered by tree-ring data). 397 

As mentioned earlier, the StandLEAP simulator does not incorporate CO2 398 

enhancement effects. In the event that a CO2 fertilization effect has occurred during the 399 

20th century, climatically driven simulations of NPP and TGI should show increasing 400 

divergence with increasing or decreasing atmospheric CO2 [Graumlich, 1991; Jacoby and 401 

D’Arrigo, 1989; 1997; Rathgeber et al., 2000]. To test this fertilization hypothesis, 402 

residuals of the difference between TGI and NPP
AR

 were related to atmospheric CO2 data 403 

using correlation analysis and piecewise regression [Friedman, 1991]. In the regression 404 

analysis, the relationship between residuals and [CO2] was described by a series of linear 405 

segments of differing slopes, each of which was fitted using a basis function. Breaks 406 

between segments were defined by a knot in a model that initially over-fitted the data, 407 

and was then simplified using a backward/forward stepwise cross-validation procedure. 408 

This approach was preferred over a linear trend analysis because CO2 increases non-409 

linearly through time. The null hypothesis Ho of ‘no fertilization effect’ was to be rejected 410 

in the presence of a basis function with a positive slope post-1970 (i.e. when the rate of 411 

CO2 increase was most important). The R package ‘earth’ was used [R Development Core 412 

Team, 2007]. The Generalized Cross Validation (GCV) penalty per knot was set to four 413 
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and the minimum amount of observations between knots was set to 25 to ensure 414 

numerical stability. Other parameters were kept as in the ‘earth’ default settings. 415 

 416 

4.4 Sensitivity analysis to atmospheric CO2 417 

Empirical evidence indicating CO2 fertilization effects has often resulted from laboratory 418 

or controlled experiments following a doubling of pre-industrial CO2 concentrations from 419 

approximately 300 ppmv to 700 ppmv [e.g. Norby et al., 2005]. The CO2 forcing acting 420 

on natural environments is much lower (from 300 ppmv in 1910 to 370 ppmv in 2000) 421 

and, hence, the response of forests cannot be expected to be as large as the one seen in 422 

experimental conditions [Joos et al., 2002]. The fertilization effect in natural 423 

environments could simply be under the limit of statistical detection [D’Arrigo and 424 

Jacoby, 1993]. We investigated this potential source of error through a sensitivity 425 

analysis in which an ‘expected’ effect of CO2 fertilization was added to simulations of 426 

NPP
AR

. The ‘expected’ effect of CO2 fertilization on forest growth is often quantified 427 

using a logarithmic response function that takes the form of  428 

 429 

[eq. 9] ))/ln(1( 22 OEOE COCONPPNPP β+⋅=  430 

 431 

where NPPE and NPP0 refer to net primary productivity (eq. 4) in enriched (CO2E) and 432 

control (CO2O) CO2 environments, respectively [e.g. Friedlingstein et al., 1995; 433 

Rathgeber et al., 2000; Peng et al., 2009]. In this equation, β is an empirical parameter 434 

that ranges between 0.0 and 0.7, and is adjusted so that NPP under a doubled atmospheric 435 

CO2 concentration (from 350 to 700 ppmv) increases by approximately 23% (eq. 9) 436 
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[based on experimental evidence from Norby et al., 2005]. We used a value of 0.34 for β, 437 

as in Peng et al., [2009]. Under the hypothesis that a fertilization effect in TGI has not 438 

occurred, residuals of the difference between TGI and ‘CO2-enriched NPP
AR

’ simulations 439 

should show a significant bias toward decreasing values with increasing atmospheric CO2 440 

(i.e. negative slope). On the other hand, a slope that is not significantly different from 441 

zero would imply that the fertilization effect in TGI is possible but too small to be 442 

statistically detected by our modelling procedure. In such an eventuality, the CO2 443 

fertilization effect could simply be masked by the high inter-annual variability in the TGI 444 

time-series. 445 

 446 

5. Results 447 

5.1 Temporal changes in tree growth index 448 

Most sampled jack pine trees originated from post-fire recruitment episodes, as for 449 

example in the 1890s (~60% of trees) and 1750s to 1770s (~20%) (Fig. 4b). The only 450 

information available on growth conditions prior to the 1890s was from dead trees. That 451 

being said, a close relationship between average ring width of dead and living trees and 452 

tree age (Fig. 5) (R
2
 = 0.49; n = 332) suggested the existence of relatively homogeneous 453 

behaviour in the tree population under study with regard to growth rates. Also, the age-454 

related growth trend of trees originating from prior to 1880 was reasonably similar in 455 

level and slope to a curve obtained from trees originating after 1880 (Figs. 2b). We also 456 

found little difference in the age-related growth trends under different classes of jack pine 457 

dominance (auxiliary material Fig. S4). Therefore, one can assume that the trees belonged 458 
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to the same population, a prerequisite for application of the regional curve standardization 459 

[Esper et al., 2003].  460 

First-order autocorrelation (AR1) of the jack pine record was 0.83 over 1717–461 

2000, reflecting high biological memory (i.e. persistence of previous year growth 462 

conditions). The best AR model fit was obtained using an AR(5) process. However, an 463 

AR(2) model (described in Table 1) was considered the best for a sub-period covering 464 

1880–2000.  465 

Expressed population signal (EPS) values meet signal strength acceptance for the 466 

full period covered by tree-ring data (Fig. 4d). Replication of ring-width measurements 467 

may thus be considered sufficiently high to approximate a signal representative of a 468 

theoretical population of an infinite number of trees, i.e. an entire forest stand [Wigley et 469 

al., 1984]. However, the low correlation obtained during the 30-year ‘moving window’ 470 

analysis of the inter-series correlation ( Rbar < 0.32 over much of the 19th and 20th 471 

centuries; Fig. 4d) demonstrates the high variability among measurement series, and 472 

suggests the action of diverse biological and non-biological forcing agents on the growth 473 

of the jack pine trees. This was further highlighted by a wide bootstrap confidence 474 

interval around the mean throughout much of the 19th century, when sampling replication 475 

was low (Fig. 4a). As opposed to any previous time periods, the period submitted to our 476 

modelling experiment (i.e. 1912–2000) appeared minimally biased, as can be assessed 477 

from high EPS, relatively stable Rbar, and a narrow confidence interval around the mean. 478 

The final TGI chronology suggested marked variations in the growth of jack pine trees, 479 

with low growth from the 1910s to 1940 and around 1960, and highs in the 1950s and 480 

post 1970 (Fig. 4a). Least-squares linear regression applied to the TGI indicated a 481 
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positive trend over 1912–2000 (Table 2). The trend explained 34.4% of the variance in 482 

data (Table 2). 483 

 484 

5.2 Simulated forest productivity 485 

Simulated annual GPP over 1912−2000 averaged 857 gC m
-2

 yr
-1

, and simulated 486 

respiration losses were about 52% of this amount (Fig. 6). Annual simulated NPP 487 

averaged 460 gC m
-2

 yr
-1

, with a minimum of 212 gC m
-2

 yr
-1

 in 1961 and a maximum of 488 

556 gC m
-2

 yr
-1

 in 1977 (Fig. 7). About 60% of annual NPP was produced during the June 489 

to August period (average equals 270 gC m
-2

 yr
-1

). Summer NPP also showed a higher 490 

departure from the mean (standard deviation of 45 gC m
-2

 yr
-1

) than spring or fall 491 

(respectively 21 and 15 gC m
-2

 yr
-1

). Indeed, except perhaps in the 1970-80s, most of the 492 

highs and lows in annual NPP (Fig. 7) were found within the productivity during summer 493 

months. These variations were driven in the model by the climate modifiers affecting 494 

RUE (eq. 2) and, hence, GPP. The temperature constraints on respiration (eq. 4) were 495 

likely not sufficiently important to induce in NPP the large departures from the mean 496 

seen in Fig. 7.  497 

The simulation suggested an increase in forest productivity over the century, with 498 

an increase of annual GPP estimated at 0.780 gC m
-2

 yr
-1

 and a linear trend explaining 499 

9.7% of the variance in data (Table 2; Fig. 6). Nevertheless, carbon losses due to 500 

respiration have also significantly increased, but such losses were more than compensated 501 

by increased GPP, resulting in a significant rise in NPP of 0.502 gC m
-2

 yr
-1

. This rise in 502 

NPP explained 7.8% of the variance in data (Table 2; Fig. 7). Most of the increase was 503 

simulated to have taken place in the spring (by 0.233 gC m
-2

 yr
-1

).  504 
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Climate factors encapsulated in the bioclimatic model were also tested for the 505 

presence of linear trends. Amongst factors that could explain the simulated upward trend 506 

in forest productivity were increases in the length of the growing seasons, as inferred 507 

from the annual sums of growing degree days above 5°C, and increased availability of 508 

soil moisture in the first meter of soil (Table 2 and Fig. 8). Both variables had a 509 

significant positive trend over 1912−2000 (P < 0.05), explaining 6.0% and 6.8% of the 510 

variance in data, respectively.  511 

 512 

5.3 Comparing empirical data with simulations  513 

The AR process dominating the jack pine TGI (Table 1) was applied to the yearly totals 514 

of simulated NPP so that both series could share similar time-dependent behaviour (see 515 

Methods). The two records, illustrated in Fig. 9a, shared 47.2% of common variance over 516 

their common period of analysis, i.e. 1912 to 2000 (P < 0.01 according to Monte Carlo 517 

simulations). The amount of shared variance equalled 28.5% (P < 0.05) when both series 518 

were detrended prior to analysis. Most often, the simulation of NPP
AR

 propagated well 519 

within the uncertainty band of the TGI data (Fig. 9). Nevertheless, the simulation did not 520 

do well in 1921−1925 (overestimation), 1936−1937 (underestimation), 1975−1976 521 

(underestimation), and 1992 (overestimation). These years were not found to be 522 

systematically related to a climatic factor (as investigated with Student-t tests on monthly 523 

climatic data) or to a biological agent acting on growth, such as outbreaks of the jack pine 524 

budworm (Choristoneura pinus Freeman) [McCullough, 2000; Volney, 1988] recorded in 525 

the DMPF from 1938 to 1942 and in 1985 [Canadian Forestry Service, 1986]. These 526 

years might reflect the influence of climatic extremes not taken into account by the 527 
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simulator or of magnitudes outside the domain of calibration of the modifiers affecting 528 

RUE (see Methods). If we eliminate the ‘disconnected’ years 1936 and 1976 (with 529 

Studentized residuals > 3.0) from the data comparison, the amount of shared variance 530 

between data rises to 59.0% (39.5% after detrending).  531 

A positive trend in productivity over the past century is clearly distinguishable in 532 

the NPP
AR

 simulations and in TGI (Table 2 and Fig. 9), indicating long-term changes in 533 

growing conditions. Both TGI and NPP
AR

 shared similar regression slopes (i.e. no 534 

statistical difference) and amount of variance explained by the trend line (Table 2). Also 535 

clearly distinguishable in the jack pine TGI series were growth declines in the 1920s to 536 

1930s and early 1960s (Fig. 9a). Coincident with these episodes are notable drought 537 

events that are reflected in the index of available soil water at a depth of 1 m (Fig. 8b). 538 

The influence of moisture availability on jack pine growth was readily apparent when 539 

correlating the TGI data over 1912−2000 with the smoothed version of available soil 540 

water (Fig. 8b): the two records shared 42.7% of variance.  541 

 542 

5.4 Testing for a CO2 fertilization effect 543 

Climatically driven simulations of NPP
AR

 and TGI did not show evidence of increasing 544 

divergence with increasing atmospheric [CO2] as residuals of the difference between TGI 545 

and NPP
AR

 (Fig. 10a) were uncorrelated to long-term changes in the atmospheric [CO2] 546 

(R
2
 = 0.017, P > 0.30). In addition, the piecewise regression model did not detect a linear 547 

segment or a long-term trend in residuals capturing a missing effect of increasing 548 

atmospheric [CO2] on NPP (Fig. 10a). When the effect of CO2 fertilization was added to 549 

NPP through the use of eq. 9 and β = 0.34, the residuals of the difference between TGI 550 
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and CO2-enriched NPP
AR

 were negatively correlated to long-term changes in the 551 

atmospheric CO2 (R
2
 = 0.067, P < 0.05), and presented a significant bias according to the 552 

piecewise regression analysis (Fig. 10b). Our results therefore suggest that long-term 553 

changes in the TGI were adequately reproduced by the climatically driven simulation of 554 

NPP
AR

 without inclusion of a CO2 factor.  555 

We also conducted a sensitivity analysis in order to evaluate the statistical 556 

detection limit of our approach. Our analysis involved re-doing the simulation of NPP
AR

 557 

with values of β varying between 0 and 0.7. Results of this analysis revealed that values 558 

of β greater than 0.20 generated an overestimation of the slope of the linear trend between 559 

NPP
AR

 and TGI data (period 1912−2000) (Fig. 11a). Residuals between NPP
AR

 and TGI 560 

also increased with values of β greater than 0.20 (Fig. 11b) and were increasingly 561 

correlated to CO2 (Fig. 11c). A cut-off value of β = 0.20 corresponded to a growth 562 

enhancement of 14% with a doubling of CO2.  We also found a slight improvement of 563 

model fit between TGI and NPP
AR

 with the addition of a weak CO2 factor between 0.10 564 

and 0.15, but this effect was non-significant  (see minimum value in Fig. 11b and 565 

auxiliary material Figs. S5 and S6).  566 

 567 

6. Discussion 568 

It is of increasingly common practice for modellers to include CO2 fertilization effects 569 

when assessing the current and future impacts of global climate change (see 570 

Introduction). This practice, which is done using empirical evidence from laboratory or 571 

controlled conditions, is often applied to large territories (e.g. continental scale) and over 572 

a range of habitats and species. Within the detection limit of the data-model approach 573 
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used in this work, we find nothing to support the idea of a FACE-level CO2 growth 574 

enhancement (23% for a doubling of CO2) in jack pine trees of the DMPF during the 20th 575 

century (β = 0.34).  In addition, comparison between recent growth and growth prior to 576 

the 1890s in our jack pine TGI series of the DMPF fails to show the multicentury 577 

increase in growth that should be expected as a result of the CO2 fertilization effect 578 

[Jacoby and D’Arrigo, 1989, 1997; Huang et al., 2007]. As seen in Fig. 2, the age-related 579 

growth trend of trees originating after 1880 is reasonably similar in level and slope to a 580 

curve obtained from trees originating prior to 1880 in spite of significant increases in 581 

atmospheric CO2 over the past century [Keeling et al., 1982; Etheridge et al., 1996]. 582 

Because of the detection limit of our approach, evaluated at 14% growth enhancement for 583 

a doubling of CO2 (maximum β = 0.20), our results do not invalidate suggestions for a 584 

lower CO2 fertilization effect, such as the value of 15% proposed by Hickler et al. [2008]. 585 

Our results do suggest the need to use caution when including CO2 fertilization effects in 586 

models.    587 

Empirical observations provide support to the correctness of our modelling results 588 

with respect to the factors driving the simulated 20th century increase in NPP. Net 589 

ecosystem productivity of coniferous forests is increased by early spring warming [Arain 590 

et al., 2002; Grant et al., 2009] but reduced by hot summers and soil moisture depletion 591 

[Griffis et al., 2003; Dunn et al., 2007]. The pattern of year-to-year changes in tree 592 

growth reflects the underlying influences of variability in the climate and occurrence rate 593 

of weather episodes favourable or not to photosynthesis (eq. 1) and respiration (eq. 4). 594 

Our observed trends toward greater length of the growing season and greater available 595 

soil water are consistent with these short-term observations. Notably, springtime 596 
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increases in simulated NPP suggest that growth conditions in the second half of the 597 

century have benefited from increasing growing season degree-days, particularly through 598 

an earlier onset of spring (Fig. 7). Extension of the growing season by up to 2 weeks in 599 

mid- and high northern latitudes since the early 1970s is apparent in remotely-sensed 600 

vegetation indices (NDVI) [Myneni et al., 1997; Zhou et al., 2001] and in seasonal trends 601 

of atmospheric CO2 drawdown [Keeling et al., 1996]. The positive influence of global 602 

warming on plant growth and establishment in high-latitude, cold-limited systems has 603 

widely been reported [e.g. Jacoby and D’Arrigo, 1989, 1997; Gamache and Payette,  604 

2004; Briffa et al., 2008].  605 

Also clearly distinguishable in the jack pine TGI series of the DMPF were growth 606 

declines in the 1920s to 1930s and early 1960s coherent with intense or frequent drought 607 

years. These well-documented droughts [e.g. Girardin and Wotton, 2009] may have been 608 

relatively mild when examined in the context of past centuries [e.g. Cook et al., 2004], 609 

but the ‘Dust Bowl’ drought nevertheless severely affected almost two-thirds of the 610 

United States and parts of Mexico and Canada during the 1930s [Schubert et al., 2004]. It 611 

is apparent from our NPP simulations and empirical data that carbon uptake by the jack 612 

pine population of the DMPF was severely limited for much of the early 20th century as a 613 

consequence of this extreme climatic anomaly. The year 1961, which was referred to by 614 

Girardin and Wotton [2009] as the driest summer over the period 1901−2002 for Canada 615 

as a whole, also stands out as the year with the lowest simulated NPP (and measured 616 

TGI) for the entire simulated period. 617 

So why has CO2 fertilization of jack pine trees in the DMPF failed to be detected? 618 

It is apparent that constraints other than atmospheric CO2 concentration have been and 619 
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are still limiting the growth of this forest. Temperature effects on growth are strongly 620 

mediated by nutrient availability and capture [Jarvis and Linder, 2000]. Although the 621 

drop in forest productivity with increasing latitude highlights the primary controlling role 622 

of climate across the spatial domain (e.g. temperature dependence of the CO2-623 

enhancement effect as discussed in the Introduction), secondary factors, such as soil 624 

fertility and stand age, that operate on a longer time lag may be attenuating the immediate 625 

impact of climate warming and CO2 fertilization in these forests [e.g. Körner et al., 626 

2005]. One constraint would be the insufficient availability of nitrogen in soils to meet 627 

the increasing demand under elevated CO2 [Oren et al., 2001; Johnson et al., 2004; 628 

Norby et al., 2008, 2009], particularly on sites with low to moderate soil nitrogen 629 

availability [Reich et al., 2006]. In general, coniferous forests are believed to have lower 630 

availability of nitrogen due to slower nutrient turnover than deciduous forests [Jerabkova 631 

et al., 2005; Ste-Marie et al., 2007].  632 

An additional constraint on the detection of the CO2 fertilization effect is the 633 

expected size of this effect in comparison to the detection limit. The effect may not yet be 634 

detectable in natural forest environment, in part because it may be much smaller than 635 

what is found in controlled experiments, and in part because the CO2 increases during the 636 

studied interval were relatively modest, again in comparison to controlled experiments. 637 

These findings concur with those of Joos et al. [2002]. The results of the sensitivity 638 

analysis revealed that our analysis cannot detect a fertilization effect of up to β = 0.20, 639 

which corresponds to a growth enhancement of 14% with a doubling of CO2.  However, 640 

this value of β as a detection cut-off results in part from our choice of pre-treatment 641 

method for the TGI measurement series that retained the most amount of trend possible 642 
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(auxiliary material Fig. S1). This choice enhances the probability of generating false 643 

positive or Type 1 errors at lower values of β (i.e. accept the fertilization hypothesis when 644 

in fact there is none). The use of other detrending methods would have resulted in a 645 

detection cut-off value of β lower than 0.20 (auxiliary material Fig. S6).   646 

 Other uncertainties may also weaken our inference. In particular, the method 647 

relies on the use of a dataset with a uniform distribution of tree establishment and 648 

mortality dates over time in order to allow common climate/CO2 signals to be cancelled 649 

and averaged out when the series are aligned by cambial age (Fig. 3a). In our 650 

experimentation this condition is not necessarily met as a large proportion of trees 651 

germinated within a short period in the 1890s. Nonetheless, results of a sensitivity 652 

analysis (auxiliary material Fig. S2) that involved a downsampling of the number of trees 653 

established during that interval suggest that our inference is robust against this source of 654 

error. Finally, the instrumental weather data used as input for the simulator were subject 655 

to homogenization and this could induce some uncertainty in the measurement trend, 656 

which might also be carried over into the modeled estimates. In our estimation, however, 657 

none of these sources of uncertainty weaken the basic inference from this study that, in 658 

our boreal forest environment, we could not detect the level of CO2 fertilization effect 659 

that has been reported in controlled FACE experiments [Norby et al., 2005] and that is 660 

often included in simulations of future forest productivity [e.g. Chen et al., 2000; Peng et 661 

al., 2009]. 662 

 663 

7. Concluding remarks 664 
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This study suggests that empirical evidence from controlled experiments on CO2 665 

fertilization cannot be directly extrapolated to large forested areas without a good 666 

understanding of local constraints on forest growth. Inclusion of such additional 667 

constraints on growth in the models remains a daunting task when they are to be applied 668 

to large heterogeneous landscapes such as the boreal forest. Adding complexity to models 669 

without empirical supporting evidence as to the applicability of the additional 670 

relationships may in the end become counter-productive and generate unrealistic 671 

projections of future forest states. In spite of all their shortcomings, field-based studies 672 

such as this one remain one of the best guarantees that we indeed understand forest 673 

growth and can adequately predict its future.   674 

We currently do not know if our inference with respect to the absence of long-675 

term CO2 fertilization applies to all of Canada’s closed-canopy boreal region but 676 

widespread replication of this type of study is currently challenging. The technique 677 

employed in the processing of our jack pine tree-ring data (regional curve 678 

standardization) has high capabilities for preserving long-term growth changes [e.g. 679 

D’Arrigo et al., 2006]. Nevertheless, the technique can only be applied in specific 680 

circumstances [Esper et al., 2003] and requires high within-site replication (D’Arrigo et 681 

al., 2006). Many tree-ring datasets across closed-canopy forests of boreal Canada have 682 

been developed in the past [Girardin et al., 2006; St. George et al., 2009]. However, few 683 

of these data have been collected from productive forests following a dense sampling 684 

scheme that includes sampling of multiple age cohorts. Expansion of this work is further 685 

limited by the absence of plot-level data necessary to run process-based models on stands 686 

in which growth increment data were collected. While the applicability of species-687 
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specific process-based models may be fairly narrow in scale owing to the complexity of 688 

input data, they are of valuable help in answering specific questions that are relevant to 689 

modellers of carbon exchanges of broad spatial scales. Estimates of stand attributes, such 690 

as biomass and soil types, through remote sensing could help address some of these 691 

issues in the future. There is, however, clearly a need for additional tree-ring sampling 692 

campaigns coupled with complete plot-level information if we are to successfully  693 

document and attribute long-term growth trends in the circumboreal forests.  694 
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Figures 983 

 984 

Fig. 1 Map showing the geographical location of Duck Mountain Provincial Forest 985 

(DMPF) in Manitoba, Canada. Meteorological stations are indicated by filled triangles. 986 

 987 

 988 

 989 
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 990 

Fig. 2 a) The regional curve used in the detrending of the 332 jack pine ring-width 991 

measurement series (thick black line). Gray shaded area shows standard error associated 992 

with the mean growth of trees (red line) for each ring age. b) Regional and mean growth 993 

curves for trees established prior to and after A.D. 1880. c) Total number of samples (n) 994 

used through time (colors refer to dates of tree establishment). Refer to auxiliary 995 

materials Figs. S1 and S2 for sensitivity analyses of these curves. 996 
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 997 

Fig. 3 Comparison of monthly simulated fluxes by StandLEAP with those measured by 998 

eddy covariance technique over 2000−2006 in a 95-year-old stand in Saskatchewan, 999 

Canada (53.92°N, 104.69°W) [Gower et al., 1997; Griffis et al., 2003]. Data shown are a) 1000 

photosynthetically active radiation (PAR), b) gross primary productivity (GPP) versus 1001 

gross ecosystem productivity (GEP), c) ecosystem respiration (Re), and d) net ecosystem 1002 

productivity (NEP). Linear regression lines with model R-squared are shown. The eddy 1003 

covariance technique is a well-established method to directly measure fluxes and net 1004 

ecosystem productivity over a fetch larger than typical plot level measurements 1005 

(Baldocchi, 2003). The methods used for flux measurements follow the methodology 1006 

described in Baldocchi et al. [2001]. All fluxes were corrected for storage changes in the 1007 

canopy atmosphere. Stand attributes for StandLEAP simulation were: stem density = 1008 

1190 stems ha
-1

; aboveground biomass = 69.0 Mg ha
-1

; depth of available soil water = 1.0 1009 

m; elevation 579.27 m [Gower et al., 1997].  1010 
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 1 

Fig. 4 a) Jack pine tree growth index (TGI) (AD 1717–2000) with 95% bootstrap 2 

confidence interval (95% CI; blue shading). A solid line (red) shows the long-term mean; 3 

a double arrow (dark grey) delineates the period of analysis 1912−2000 used in the 4 

bioclimatic modelling experiment. The vertical shading (yellow) denotes periods with 5 

low sample sizes and large error (larger confidence intervals). b) Number of tree rings 6 

used through time (divide by 2 for an approximate number of trees). c) Mean cambial age 7 

of each calendar year. d) EPS and Rbar  statistics (calculated over 30 years lagged by 15 8 

years). The dotted line denotes the 0.85 EPS criterion for signal strength acceptance 9 

[Wigley et al., 1984]. 10 
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 1 

Fig. 5 Relationship between average ring width and length of measurement series for 2 

each jack pine series. The diagram differentiates between pre- and post-1880 age cohorts. 3 

An exponential fitting is shown along with model fit. The presence of an age-dependent, 4 

decreasing relationship between average tree-ring width and measurement series length 5 

suggests the existence of a relatively homogeneous behaviour in the growth rates of trees, 6 

a necessary condition for application of the regional curve standardization method (Esper 7 

et al., 2003).   8 

 9 
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 1 

Fig. 6 Simulated annual (January to December) gross primary productivity (GPP) and 2 

respiration (growth Rg, maintenance Rm and total Rt) over 1912−2000. Shaded area 3 

delineates the 95% confidence interval for uncertainty in the mean GPP. Trend lines 4 

applied on data are shown; see Table 2 for model statistics. 5 
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 1 

Fig. 7 Simulated net primary productivity (NPP) for spring (March to May), summer 2 

(June to August), fall (September to November), and annually (January to December; 3 

shaded area delineates the 95% confidence interval for uncertainty in the mean) over 4 

1912−2000. Trend lines applied to data are shown; see Table 2 for model statistics. First-5 

order autocorrelation (AR1) values are 0.02, 0.03, 0.11 and 0.02, respectively. 6 
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 1 

Fig. 8 Trend line applied to a) annual sums of growing degree days above 5°C and b) 2 

seasonal average (April-September) of available soil water at depth of 1 m. See Table 2 3 

for model statistics. Thick lines are 5-year polynomial smoothing across data. 4 
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 1 

Fig. 9 a) Tree growth index (TGI) versus the AR simulated net primary productivity 2 

(NPP
AR

) over 1912−2000 (both are unitless indices), with linear trend lines across the 3 

data (dashed lines; see Table 2 for model statistics). Shaded area: 95% bootstrap 4 

confidence interval for uncertainty in the mean TGI and NPP
AR

 (as in Figures 4a and 7). 5 

b) Tree growth index (TGI) versus AR simulated net primary productivity (NPP
AR

) in a 6 

CO2 enriched scenario. The CO2 enriched simulation is incremented using a logarithmic 7 

response function so that NPP achieves an increase of 23% in a doubled CO2 world 8 

(specified parameter β = 0.34; see text, eq. 9). The CO2 enriched simulation was achieved 9 

using annual averages of atmospheric concentrations of CO2 reconstructed from ice cores 10 

and recorded at Mauna Loa Observatory since 1953.11 
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 1 

Fig. 10 Residuals of the difference between a) TGI and NPP
AR

 and b) TGI and CO2 2 

enriched NPP
AR

 (specified parameter β = 0.34) plotted against annual averages of 3 

atmospheric concentrations of CO2 reconstructed from ice cores and recorded at Mauna 4 

Loa Observatory since 1953. Shaded area delineates the 95% confidence interval 5 

computed from the square root of the sum of squared errors for TGI and NPP
AR

. The 6 

dashed line shows the relationship between the residuals and atmospheric concentrations 7 

of CO2 modeled using piecewise regression. In (a) the model is suggested to be an 8 

intercept-only model; in (b) the relationship takes an inflection point at 349.17 ppmv, 9 

suggesting an overestimation of the rate of increase in forest productivity in the last 10 

decades of our simulation.   11 
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 1 

Fig. 11 Sensitivity analysis of the addition of an expected fertilization effect to NPP 2 

simulation under a parameter β ranging from 0 to 0.70 (see Methods). a) Slope of the 3 

linear trend lines across NPP
AR

 and TGI data (period 1912−2000) with 95% confidence 4 

interval (95% CI) (errors bars for NPP
AR

 and horizontal shading for TGI; adjusted for 5 

autocorrelation). b) Mean of squares of the residuals (MSR) of the difference between 6 

TGI and NPP
AR

. c) R-squared of the modelled relationship between the residuals of the 7 

difference between TGI and NPP
AR

 and atmospheric concentrations of CO2 as tested 8 

using piecewise regression (refer to Fig. 10). d) Coefficients applied to the basis functions 9 

that define the slopes of the non-zero sections. Modelled relationships at β > 0.20 all took 10 
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an inflection point at 349.17 ppmv; other models were suggested to be intercept-only 1 

models. Results in b), c) and d) suggest an absence of bias in residuals attributed to an 2 

over-estimated fertilization effect for values of β ranging from 0 to 0.20 (vertical 3 

shading). 4 
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Tables  1 

Table 1. Summary of the estimated autoregressive (AR) model   2 

Parameter estimates  

Akaike information criterion (AIC) for each AR order  

AR(0) 1402.31 

AR(1) 1349.69 

AR(2) 1347.60 

AR(3) 1348.18 

Selected autoregression order 2 

Autoregression coefficients  

p1 0.495 

p2 0.184 

R
2
 due to pooled autoregression 0.39 

p: autoregressive (AR) coefficients (see eq. 8 in text) 3 

Period of analysis: 1880−20004 
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Table 2. Summary of linear trend models on tree growth index (TGI), gross primary 1 

productivity (GPP), net primary productivity (NPP and NPP after application of the AR 2 

model, Table 2), respiration (growth Rg, maintenance Rm and total Rt), growing degree 3 

days above 5°C (GDD), vapour pressure deficit (VPD), and soil water content at a depth 4 

of 1 m (SWC) over the period 1912−2000.  5 

Variable 

 

R
2 

 

Slope 

 

Effective n 

 

t-value 

 

Probability 

 

Annual GPP
 A

 0.097 +0.780 (gC m
-2
 yr

-1
) 102 3.285 *** 

      

Annual Rm
 A

 0.051 +0.078 (gC m
-2
 yr

-1
) 64 1.835 * 

Annual Rg
 A

 0.097 +0.204 (gC m
-2
 yr

-1
) 102 3.285 *** 

Annual Rt
 A

 0.078 +0.282 (gC m
-2
 yr

-1
) 71 2.421 ** 

      

Annual NPP
 A

 0.078 +0.502 (gC m
-2
 yr

-1
) 98 2.838 ** 

Spring NPP (March-May)
 A

 0.083 +0.233 (gC m
-2
 yr

-1
) 90 2.830 ** 

Summer NPP (June-August)
 A

 0.021 +0.188 (gC m
-2
 yr

-1
) 98 1.442 N.S. 

Fall NPP (September-November)
 A

 0.023 +0.092 (gC m
-2
 yr

-1
) 102 1.533 N.S. 

      

Annual NPP
AR  

 0.258 +0.0032 (unitless) 

95% CI [0.0020, 

0.0044] 

N.A. N.A. ** 

Annual CO2-enriched NPP
AR

 (β = 0.34) 0.386 +0.0044 (unitless) 

95% CI [0.0032, 

0.0056] 

N.A. N.A. *** 

Annual TGI
  B

 0.344 +0.0046 (unitless) 

95% CI [0.0032, 

0.0060] 

N.A. N.A. ** 

Residuals (TGI
 
− NPP

AR
)
 
 0.045 +0.001 (unitless) N.A. N.A. N.S. 
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Annual sums of GDD 0.060 +0.073 (°C) 68 2.055 ** 

Annual average of VPD 0.000 -0.023 (Pascal) 61 0.082 N.S. 

Seasonal average (April-September) 

of SWC 

0.068 +0.064 (mm) 93 2.058 ** 

 1 

*** Significant at P ≤ 0.01 2 

** Significant at P ≤ 0.05 3 

* Significant at P ≤ 0.10 4 

N.S.: Not significant 5 

N.A.: Not available 6 

A
 Significance of the linear trend was examined using least-squares linear regressions 7 

[von Storch and Zwiers, 1999]. Goodness of fit is described by the coefficient of 8 

determination (R
2
). Significance was tested against the null hypothesis that the trend is 9 

different from zero, using a variant of the t test with an estimate of the effective sample 10 

size (effective n) that takes into account the presence of serial persistence in data. 11 

B
 Significance of trends was evaluated using Monte Carlo simulations (see Methods).  12 

 13 

 14 

  15 

 16 


