# The impact of climate, soil and disturbance type on forest succession at Quebec's boreal-temperate ecotone

## Lukas Van Riel<sup>1</sup>, François Girard<sup>2,3</sup>, Mathieu Bouchard<sup>3,4</sup>, Marie-Hélène Brice<sup>1,5,6</sup>

- 1 Institut de recherche en biologie végétale, Dép. de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- 2 Département de Géographie, Université de Montréal, QC, Canada
- 3 Centre d'étude de la forêt, Université Laval, QC, Canada
- 4 Département des sciences du bois et de la forêt, Université Laval, QC, Canada
- 5 Jardin botanique de Montréal, Montréal, QC, Canada

6 Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, QC, Canada

## Background

- Climate change will shift geographic ranges northwards
- Trees can not keep up with their climatic niche due to their
- long generation times and short dispersal distances<sup>1</sup>



- How do climate, soil and disturbance impact the succession probabilities at the ecotone?
- Are there differences in post-fire succession probabilities between the temperate, mixed and boreal forest?





- **Significant uncertainty** on these lags still exists due to different climate scenarios and future fire regimes
- Additional factors also complicate the migration of trees:
  - Interspecific competition<sup>2</sup>
  - Soil heterogeneity<sup>3</sup>

Université m

de Montréal

Institut de recherche en biologie végétale

- Natural and anthropogenic disturbances<sup>4</sup>
- It is important to improve our knowledge of forest succession under future climate conditions
- The **boreal-temperate ecotone** is an ideal study area since the impacts of global change are visible earlier at transition zones<sup>5</sup>

STA

## Study area



| Methods                                                       |                     |                                 |                               |  |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|---------------------|---------------------------------|-------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| SIFORT data <sup>6</sup>                                      | Species grouping    | Markov chain model <sup>7</sup> | Transition probabilities      |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>Raster covering Quebec</li> </ul>                    | 1 Paper birch       | State State State               |                               |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>15" x 15"</li> <li>Closeified with photo</li> </ul>  | 2 Shade intolerants | Time                            | To<br>State 1 State 2 State 3 |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>Classified with photo-<br/>interpretation</li> </ul> | 3 Yellow birch      | $q_{11}$                        | State 1 0.75 0.2 0.05         |  |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>5 inventories between</li> </ul>                     | щ 4 Maples          | State                           |                               |  |  |  |  |  |  |  |  |  |  |  |

1970 and 2019

Selected 39 097
 polygons that were
 inventoried at least twice



### Some preliminary results

| Α          | Pap. Birch | Other intol. | Y. Birch | Maple | Other Dec. | Bals. Fir | B/R Spruce | Jack Pine | Other Con. | в            | Pap. Birch | Other intol. | Y. Birch | Maple | Other Dec. | Bals. Fir | B/R Spruce | Jack Pine | Other Con. | С          | Pap. Birch | Other intol. | Y. Birch | Maple | Other Dec. | Bals. Fir | B/R Spruce | Jack Pine | Other Con. | D          | Pap. Birch | Other intol. | Y. Birch | Maple | Other Dec. | Bals. Fir          | B/R Spruce | Jack Pine | Other Con. |
|------------|------------|--------------|----------|-------|------------|-----------|------------|-----------|------------|--------------|------------|--------------|----------|-------|------------|-----------|------------|-----------|------------|------------|------------|--------------|----------|-------|------------|-----------|------------|-----------|------------|------------|------------|--------------|----------|-------|------------|--------------------|------------|-----------|------------|
| Pap. Birc  | h 0.46     | 0.08         | 0.11     | 0.08  | 0.05       | 0.07      | 0.07       | 0         | 0.07       | Pap. Birch   | 0          | -0.03        | 0.01     | 0.01  | 0          | 0         | 0          | 0         | 0          | Pap. Birc  | h -0.05    | 0            | 0.05     | 0.03  | 0.01       | -0.04     | 0          | 0         | 0          | Pap. Birc  | h 0.06     | 0.02         | 0.02     | 0.01  | 0          | -0.09              | -0.01      | 0         | -0.02      |
| Other into | 0.25       | 0.41         | 0.08     | 0.08  | 0.03       | 0.04      | 0.07       | 0.01      | 0.05       | Other intol. | 0.09       | -0.14        | 0.01     | 0.01  | 0          | 0.01      | 0          | 0         | 0.01       | Other into | 0.02       | 0            | 0.02     | 0.02  | 0          | -0.02     | 0          | 0         | 0          | Other into | I0.01      | 0.06         | 0.01     | 0.01  | 0          | -0.04              | 0          | 0         | -0.01      |
| Y. Birc    | h 0.09     | 0.02         | 0.57     | 0.17  | 0.05       | 0.03      | 0.02       | 0         | 0.04       | Y. Birch     | 0          | 0            | 0        | 0     | 0          | 0         | 0          | 0         | 0          | Y. Birc    | h -0.12    | -0.01        | 0.14     | 0.06  | 0          | -0.04     | -0.01      | 0         | -0.01      | Y. Birc    | h -0.01    | 1 0          | 0.04     | 0.02  | 0          | -0.04              | 0          | 0         | -0.01      |
| Mapl       | e 0.06     | 0.03         | 0.18     | 0.67  | 0.02       | 0.01      | 0.01       | 0         | 0.02       | Maple        | 0          | -0.01        | 0        | 0     | 0          | 0         | 0          | 0         | 0          | Maple      | e -0.05    | -0.01        | -0.01    | 0.1   | 0          | -0.01     | 0          | 0         | 0          | Мар        | e -0.01    | 1 0          | -0.01    | 0.03  | 0          | -0.01              | 0          | 0         | 0          |
| Other Dec  | 0.09       | 0.03         | 0.14     | 0.06  | 0.39       | 0.15      | 0.06       | 0         | 0.07       | Other Dec.   | 0          | -0.01        | 0        | 0     | 0          | 0         | 0          | 0         | 0          | Other Dec  | -0.04      | -0.01        | 0.04     | 0.02  | 0.15       | -0.14     | -0.02      | 0         | 0          | Other De   | c. 0       | 0            | 0.02     | 0.01  | 0.11       | <mark>-0.15</mark> | -0.01      | 0         | 0          |
| Bals. Fi   | r 0.16     | 0.04         | 0.15     | 0.05  | 0.06       | 0.34      | 0.13       | 0         | 0.06       | Bals. Fir    | 0          | -0.01        | 0        | 0     | 0          | 0         | 0          | 0         | 0          | Bals. Fi   | r -0.02    | 0            | 0.06     | 0.02  | 0.01       | -0.07     | 0          | 0         | 0          | Bals. F    | ir 0.04    | 0.01         | 0.04     | 0.01  | 0.01       | -0.12              | 0.01       | 0         | 0          |
| B/R Spruc  | e 0.13     | 0.04         | 0.06     | 0.03  | 0.05       | 0.06      | 0.53       | 0.01      | 0.09       | B/R Spruce   | 0          | -0.01        | 0        | 0     | 0          | 0         | -0.01      | 0         | 0          | B/R Spruc  | e -0.02    | 0            | 0.01     | 0.01  | 0.01       | -0.04     | 0.04       | 0         | -0.01      | B/R Spruc  | e 0.01     | 0.01         | 0        | 0     | 0          | -0.07              | 0.07       | 0         | -0.03      |
| Jack Pin   | e 0.05     | 0.03         | 0.02     | 0.01  | 0.01       | 0.02      | 0.11       | 0.71      | 0.05       | Jack Pine    | 0          | 0            | 0        | 0     | 0          | 0         | 0          | 0         | 0          | Jack Pin   | e ()       | 0            | 0        | 0     | 0          | -0.01     | 0          | 0         | 0          | Jack Pin   | e O        | 0            | 0        | 0     | 0          | -0.02              | 0.01       | 0         | 0          |
| Other Cor  | 0.15       | 0.04         | 0.16     | 0.06  | 0.07       | 0.15      | 0.17       | 0         | 0.2        | Other Con.   | 0          | -0.01        | 0.01     | 0     | 0          | 0         | -0.01      | 0         | 0          | Other Con  | 0.03       | 0            | 0.05     | 0.02  | 0.02       | -0.09     | 0          | 0         | 0.03       | Other Co   | n. 0.02    | 0.01         | 0.04     | 0.01  | 0.01       | -0.15              | 0.02       | 0         | 0.04       |

Fig. 1: A: Transition probabilities after 10 years without perturbation. B: Change in probability compared to panel A for fire. C: Change in probability compared to panel A for harvest. D: Change in probability compared to panel A for pest outbreak.

Pap. birch to B/R spruce

Y. birch to Maple

Maple to Pap. birch

### **Future work**



**Fig. 2:** Transition probabilities as function of time without perturbation, after fire, harvest and pest outbreak.

- Model all covariates simultaneously
- Increase study area to include all of the boreal-temperate ecotone and afterwards the province
- Compare post-fire succession between forest types
- Integrate results with Quebec Landscape Dynamics Model<sup>8</sup>



[1] Renwick, K. M., & Rocca, M. E. (2015). Temporal context affects the observed rate of climate-driven range shifts in tree species. *Global Ecology* and *Biogeography, 24*(1), 44-51.

[2] Svenning, J. C., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. *American Journal of Botany, 100*(7), 1266-1286.

[3] Carteron, A., et al. (2020). Soil abiotic and biotic properties constrain the establishment of a dominant temperate tree into boreal forests. *Journal of Ecology, 108*(3), 931-944.

[4] Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. *Ecology*, 91(10), 2833-2849.

[5] Neilson, R. P. (1993). Transient ecotone response to climatic change: some conceptual and modelling approaches. *Ecological applications*, *3*(3), 385-395.

[6] MRNF, (2023). Système d'information forestière par tesselle (SIFORT). Data available at: https://www.donneesquebec.ca/recherche/dataset/systeme-d-information-forestiere-par-tesselle-sifort
[7] Brice, M. H., et al. (2020). Moderate disturbances accelerate forest transition dynamics under climate change in the temperate-boreal ecotone of eastern North America. *Global Change Biology*, *26*(8), 4418-4435.

[8] Bouchard, et al. (2019). Tree species persistence under warming conditions: A key driver of forest response to climate change. *Forest Ecology and Management, 442*, 96-104.

