Hydrological droughts are not always widespread across the entire stream network in cold, humid catchments

- hydrological droughts within a catchment.
- network is experiencing drought.

Objective

within a catchment.

Quebec²).

3 months.

Gabriel Bastien-Beaudet¹, Marc-André Bourgault², Audrey Maheu¹

¹ Institut des sciences de la forêt tempérée, Université du Québec, Canada; ² Département de géographie, Université Laval, Québec, Canada

	Estimate	95% confidence	Standard	z-value	p-value
		interval	error		
ept)	1.305	[1.228, 1.384]	0.040	32.78	< 0.001
extent	0.782	[0.729, 0.835]	0.027	28.86	< 0.001
ence: Fall	0.187	[0.122, 0.251]	0.033	5.70	< 0.001
ence: Spring	0.118	[0.056, 0.180]	0.032	3.71	< 0.001
ence: Summer	0.172	[0.109, 0.234]	0.032	5.36	< 0.001

20 30 Number of drought events Figure 4. Relationship between the number of events identified per catchment when using only the most downstream reach of a catchment and when using all the available reaches. The size of the data points represents the catchment drainage area, and the regression was obtained with a simple linear model fit between both variables.

* ~40% of drought events are missed when using a single hydrometric station VS using all available data to identify drought events in a catchment (fig.4).

