

Laboratoire sur les écosystèmes terrestres boréaux (EcoTer) Université du Québec à Chicoutimi

Measuring natural sap production in sugar maple at daily temporal resolution

<u>Sara Yumi Sassamoto Kurokawa</u>, Gaurisha Bhatt, Gian de Lima Santos, Roberto Silvestro, Sylvain Delagrange, Sergio Rossi

9 avril 2022

<<Les érables coulent, les bouilleuses chauffent à plein régime, la saison des sucres est bien entamée et elle s'annonce beaucoup plus productive que celle de l'année dernière>>

Government of Canada Gouvernement du Canada <<En 2022, l'Amérique du Nord était la seule responsable de la production mondiale de sirop d'érable. L'industrie acéricole canadienne produit environ 78 % de la production mondiale de sirop d'érable, avec 92 % des produits canadiens provenant du Québec>>

Introduction

78 % Canada

92 % Quebec

Best conditions for sap exudation

Sap production may vary according to maximum and minimum temperatures

drops sharply with minimum temperatures below -8 gc

Objectives

To test the use of the rain gauge as a tool for monitoring the timings and dynamics of sap production in sugar maple

4

Inside the rain gauge

Data logger measures: Daily minimum temperature (°C)

Daily maximum temperature (°C)

Tipping-bucket mechanism
Sap production (ml)

How the equipment was tested?

Figure 1: Scheme of the rain gauge State of Charge

Where was the data collected?

Figure 1: Location of the four study sites in Quebec, Canada

How was the data collected?

Tapping the tree

- Recorded continuously
- Stored at hourly resolution
- Daily resolution

Drilling the tree

Hypothesis

What were the results?

Battery

Time

Figure 3: Variation in the state of charge in rain gauges exposed to different temperatures and set at two logging intervals

Day of experiment

What was found?

- The experiment lasted 110 days
- Batteries at -10°C reached stable levels at a similar rate to others
- Higher logging intervals = higher state of charge
- Except at -20°C where 15-minute intervals performed better

Figure 3: Variation in the state of charge in rain gauges exposed to different temperatures and set at two logging intervals

What I think

- < 0 °C, battery discharging warms up the cells due to an interaction between electrochemical and thermal processes
- The self-heating process
- A reliable tool for recording sap production

Figure 3: Variation in the state of charge in rain gauges exposed to different temperatures and set at two logging intervals

What were the results?

What were the results?

ASJ, LAT and PMV showed the highest sap volume occurring in mid-April

RAP concentrated most sap production at the end - March and April

What I think

What was found?

Figure 5: Cumulative percentages of daily sap production.

What was found?

- Most days had low or no sap production, with patterns similar across different trees and sites
- The cumulative percentages of sap production were very similar
- 74% of total yield \rightarrow 8 highly productive days \rightarrow 20% of the entire season
 - Significant days in the season (6 to 14 days) showing no sap production

Figure 5: Cumulative percentages of daily sap production.

Cumulative days of sap production (%)

16

What I think

- Either the weather conditions during or preceding the season
- Changes in the frequency of freeze-thaw events
- Affect the occurrence of the most productive days, with potential consequences on the daily sap yield.

Figure 5: Cumulative percentages of daily sap production.

Cumulative days of sap production (%)

16

Conclusion

- Tipping bucket rain gauges can effectively perform under the harsh spring temperatures
- Daily synchronisms in sap exudation among and within sites

• Few very productive days

What are the applications of this study?

- The monitoring of the timing of sap exudation
 - The precise quantification and comparison of daily sap production

What can we expect for the future?

Centre de recherche sur la boréalie (CREB) Université du Québec à Chicoutimi

Thank you!

Collogue du