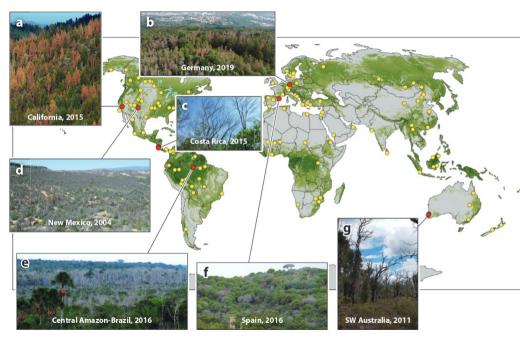
Florentin Jaeger

May 2024

Supervisors:

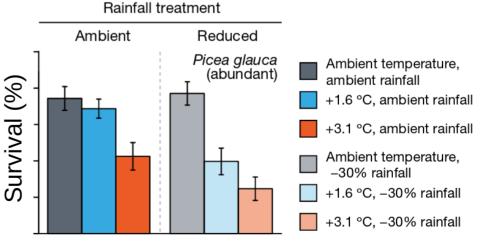
Christian Messier & Tanya Handa Root fungi and absorptive fine root traits under low and high-water availability



Outline

- 1 Climate change \rightarrow drought
- 2 Research questions & hypothesis
- 3 International Diversity Experiment Network with Trees (IDENT in Sault Ste. Marie, Ontario)
- 4 Root coring and sorting
- 5 Root traits & fungi

Increased vulnerability of forests to future warming and drought related die-off


Source: Hartmann et al. (2022)

Article

Even modest climate change may lead to major transitions in boreal forests

https://doi.org/10.1038/s41586-022-05076-3 Received: 10 May 2021

3 Peter B. Reich^{12,3}, Raimundo Bermudez¹, Rebecca A. Montgomery¹, Roy L. Rich^{1,4}, Karen E. Rice¹, Sarah E. Hobbie⁵ & Artur Stefanski¹

Questions and hypothesis root associated fungi:

1. How are fungal community abundance, richness, structure, and composition of pathogens, saprotrophs, and mutualists influenced by high and low H_2O ?

- Mutualists abundance and richness higher under high H_2O , while pathogens and saprotrophs higher under low H_2O
- 2. How do root traits structure the root microbiome under low or high H_2O
- Abundance of pathogenic and saprotrophic fungi higher under low H₂O through high specific root length, specific root surface area, and root branching density
- 3. How is shoot mass affected through fungal functional groups, root traits, and H_2O
- (see structural equation model)

International Diversity Experiment Network with Trees (IDENT), Sault Ste. Marie (Ontario)

 1
 2
 3
 4

 5
 6
 7
 8

 3
 4
 5
 11
 12

 11
 12
 13
 14

 11
 12
 13
 14

 6
 7
 8
 9

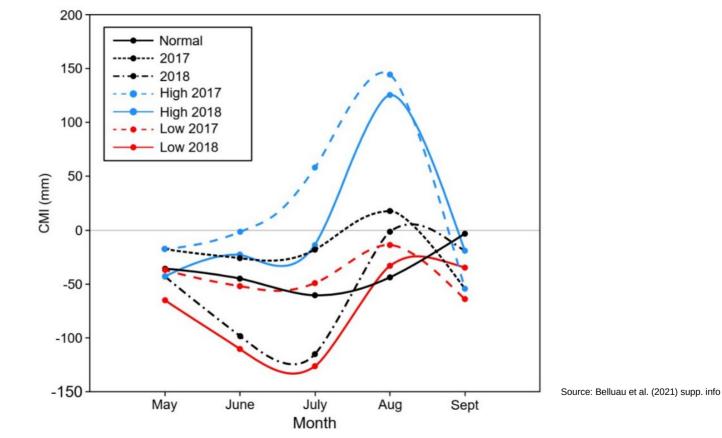
 11
 12
 13
 14

 15
 17
 18
 19

 20
 21

 23
 24
 25

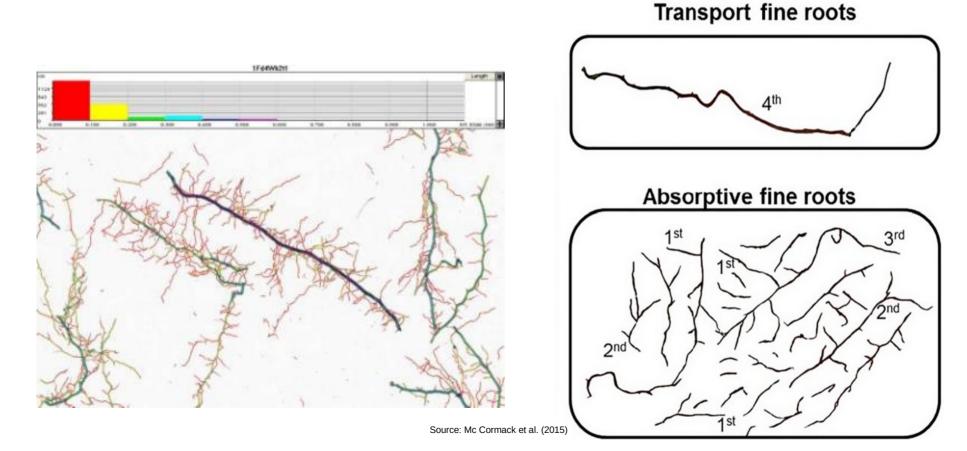
 Irrigation lines
 11
 14


Source: William C. Parker

22

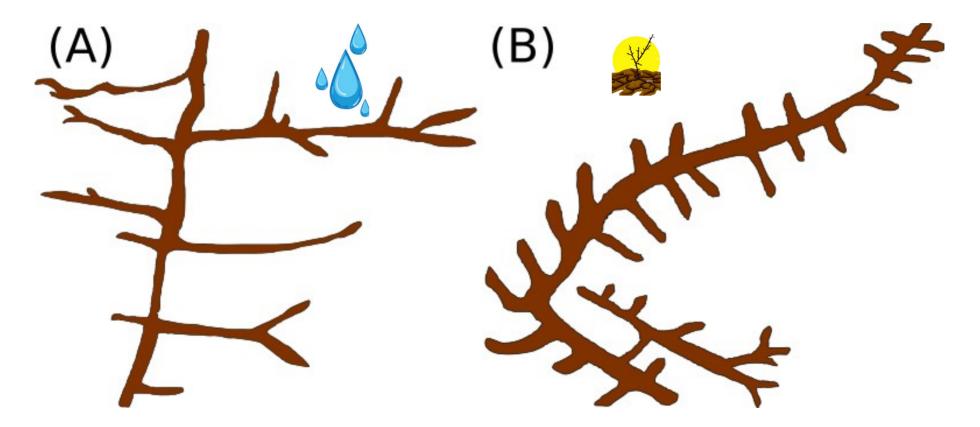
Source: Florentin Jaeger

250 % moisture addition vs. 25 % moisture removal



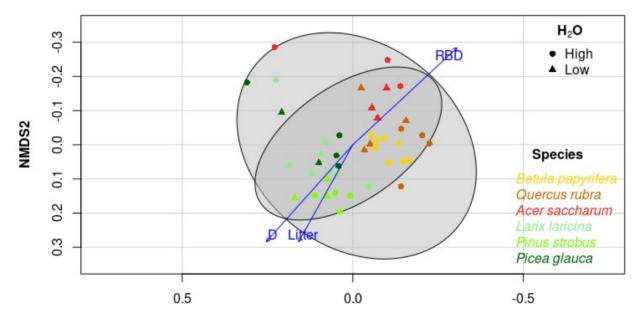
Root coring (August & September 2018)

Root sorting and collection of molecular root samples



8

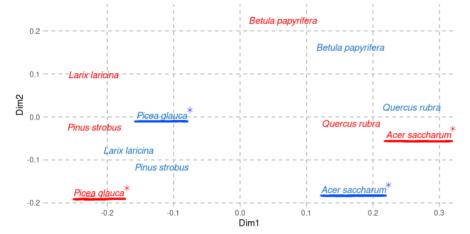
Linear and generalized linear mixed effect models


 Ime4::Imer(richness ~ species x H₂0 + (1 | bloc), data = ..., REML = T)

 adonis2(formula = vegdist(comm_rarfy, method = "bray") ~ species x H₂0, data = ...) Increase of absorptive capacity through higher root branching density rather than greater surface area *per* se (i.e. root length, SRL & RLD)

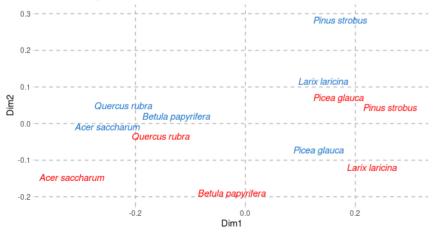
Fungal group	Attribute	Tree species (Sp)	H_2O	Sp x H ₂ O
Total community	Richness	14.08 (<0.001)	0.11 (0.74)	8.15 (<0.001)
	Structure (PERMANOVA)	2.83 (<0.001)	1.51 (<0.001)	1.07 (0.23)
	Composition (PCoA1)	33.82 (<0.001)	1.45 (0.26)	1.63 (0.18)
	Composition (PCoA2)	4.09 (<0.01)	1.31 (0.29)	1.14 (0.35)
Pathogens	Richness (GLM)	15.84 (<0.01)	16.52 (<0.001)	27.93 (<0.001)
-	Structure (PERMANOVA)	2.69 (<0.01)	0.82 (0.07)	2.08 (<0.05)
	Composition (PCoA1)	0.51 (0.72)	0.03 (0.85)	0.38 (0.81)
	Composition (PCoA2)	1.61 (0.24)	2.09 (0.19)	0.62 (0.65)
	Abundance (GLM)	3.92 (0.55)	3.67 (0.055)	4.91 (0.42)
Saprotrophs	Richness	3.70 (<0.05)	0.50 (0.50)	4.91 (<0.01)
·····	Structure (PERMANOVA)	3.92 (<0.01)	0.92 (0.33)	1.07 (0.45)
	Composition (PCoA1)	10.99 (<0.001)	0.68 (0.44)	1.96 (0.11)
	Composition (PCoA2)	9.64 (<0.001)	1.28 (0.26)	0.75 (0.59)
	Abundance	6.52 (<0.001)	0.26 (0.62)	0.90 (0.49)
Mutualists	Richness	12.38 (<0.001)	1.36 (0.28)	3.86 (<0.01)
	Structure (PERMANOVA)	15.51 (<0.001)	4.43 (<0.001)	4.00 (<0.05)
	Composition (PCoA1)	2.22 (0.08)	1.31 (0.29)	1.12 (0.37)
	Composition (PCoA2)	10.76 (<0.001)	0.92 (0.37)	1.02 (0.42)
	Abundance	26.97 (<0.001)	0.73 (0.43)	2.22 (0.08)

Angio- vs. Gymnosperms separated fungal community and root traits

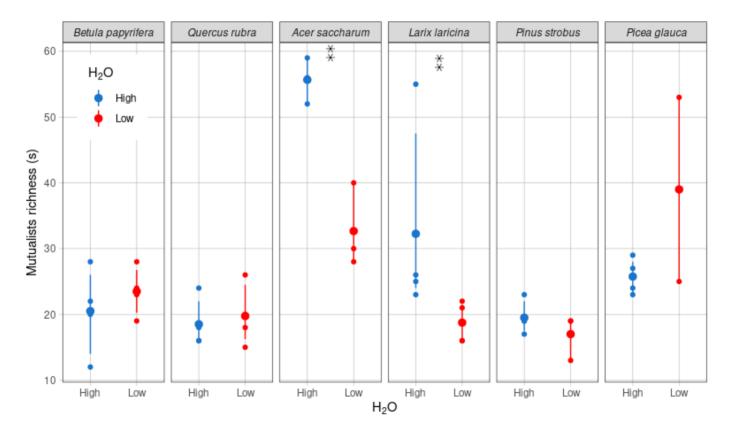


NMDS/Bray - Stress = 0.211

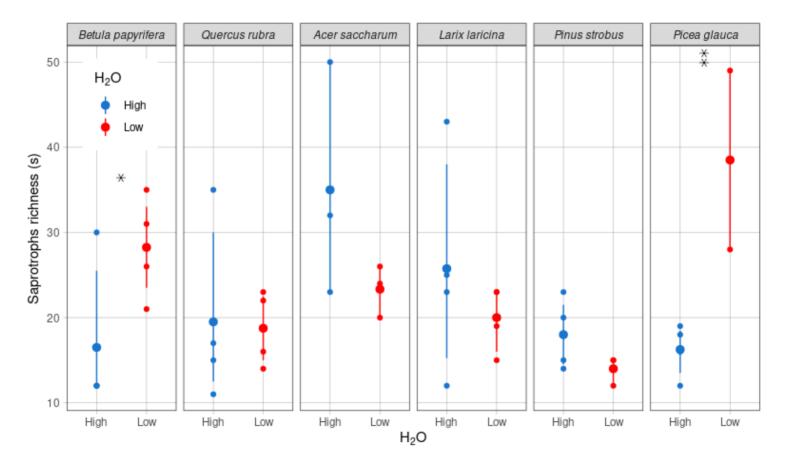
NMDS1


Total fungal community --> A. Saccharum and P. Glauca are separated according to H₂O (a), while fungal groups are only separated according to H₂O on a global level (b)

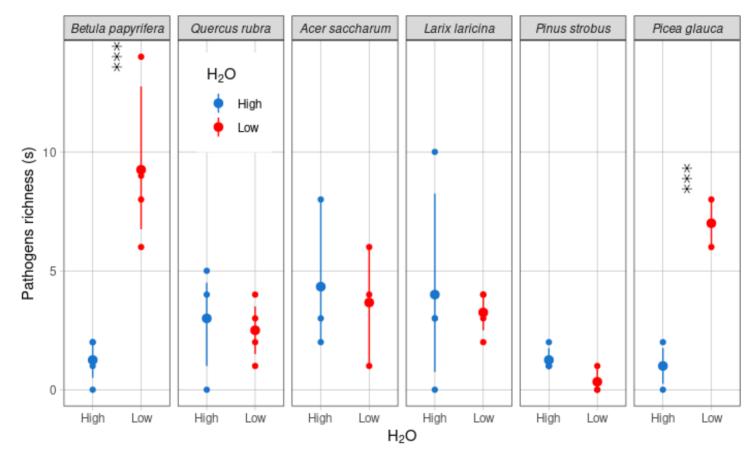
(a) Beta diversity: Total fungal community


Source of variation	Df	Sum of Squares	R^2	F	Pr(>F)
H ₂ O Low	1	0.5011	0.02872	1.4952	< 0.05
Quercus rubra	1	0.9955	0.05706	2.9707	0.08333
Acer saccharum	1	1.1090	0.06356	3.3092	0.08333
Larix laricina	1	0.7320	0.04196	2.1844	0.08333
Pinus strobus	1	0.9931	0.05692	2.9635	<0.05
Picea glauca	1	0.9269	0.05313	2.7658	0.08333
H ₂ O Low x <i>Quercus rubra</i>	1	0.4176	0.02394	1.2462	0.62500
H ₂ O Low x Acer saccharum	1	0.4803	0.02753	1.4333	<0.05
H ₂ O Low x <i>Larix laricina</i>	1	0.2520	0.01444	0.7519	0.95833
H ₂ O Low x <i>Pinus strobus</i>	1	0.2790	0.01599	0.8324	0.29167
H ₂ O Low x <i>Picea glauca</i>	1	0.3715	0.02129	1.1084	<0.05
Residuals	31	10.3885	0.59545	-	-

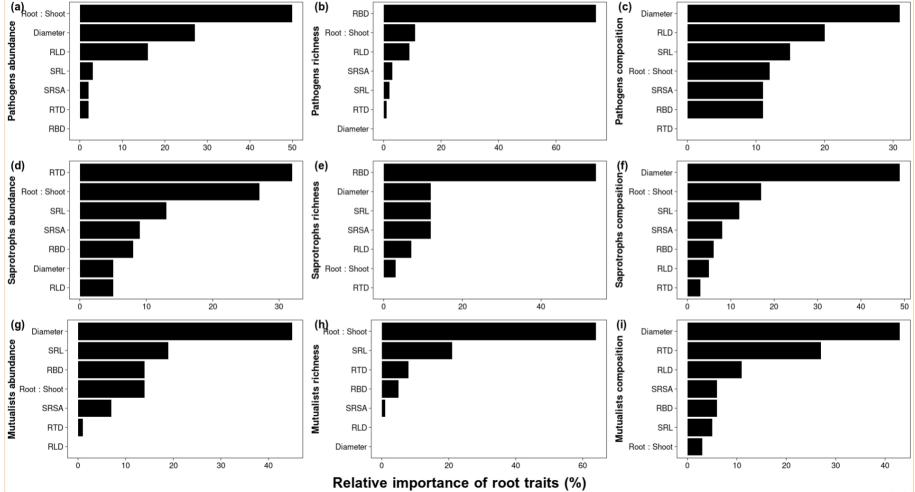
(b) Beta diversity: Fungal functional groups

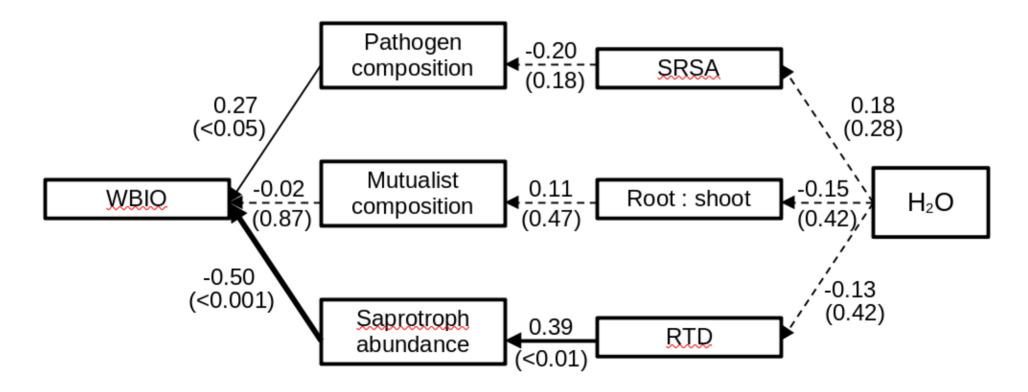

Source of variation	Df	Sum of Squares	R ²	F	Pr(> <i>F</i>)
H ₂ O Low	1	0.5123	0.02971	1.5387	<0.05
Quercus rubra	1	0.9778	0.05670	2.9369	< 0.05
Acer saccharum	1	1.2401	0.07191	3.7247	0.08333
Larix laricina	1	0.6492	0.03764	1.9499	0.12500
Pinus strobus	1	0.9657	0.05600	2.9007	0.08333
Picea glauca	1	0.8407	0.04875	2.5249	0.08333
H ₂ O Low x Quercus rubra	1	0.5693	0.03301	1.7100	0.20833
H ₂ O Low x Acer saccharum	1	0.3662	0.02123	1.0998	0.12500
H ₂ O Low x <i>Larix laricina</i>	1	0.2326	0.01349	0.6986	0.95833
H ₂ O Low x <i>Pinus strobus</i>	1	0.2329	0.01352	0.6996	0.75000
H ₂ O Low x <i>Picea glauca</i>	1	0.3379	0.01960	1.0150	0.12500
Residuals	31	10.3211	0.59847	-	-

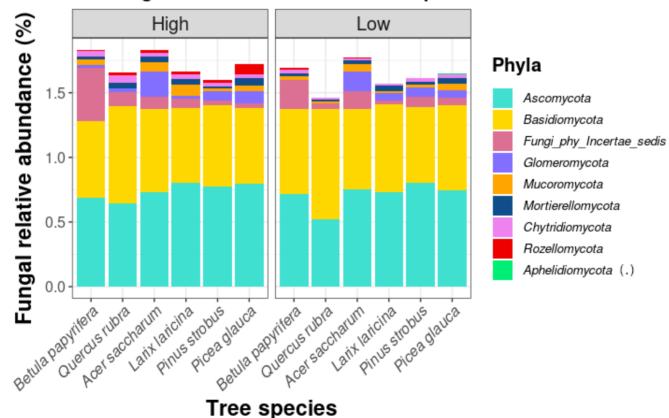
Higher richness under more benign growing conditions (H₂O high) for *A. Saccharum* & *L. laricina*



14


Saprotroph richness increased under low H₂O for *B. Papyrifera* & *P. Glauca*


Pathotrophs might take advantage of dryer roots (more root leasons?)


Saprotroph and pathogen abundance not higher under low H_2O , and high root surface area not the primary driver of saprotroph and pathogen abundance.

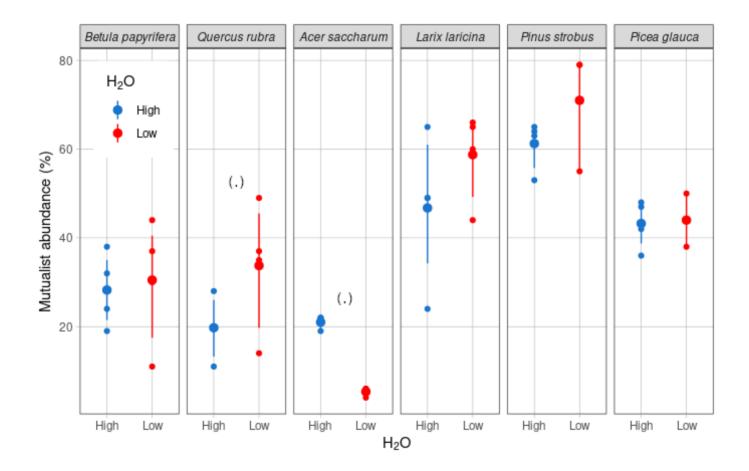
Fungal functional groups are more important than H₂O, and only RTD effects saprotroph abundance.

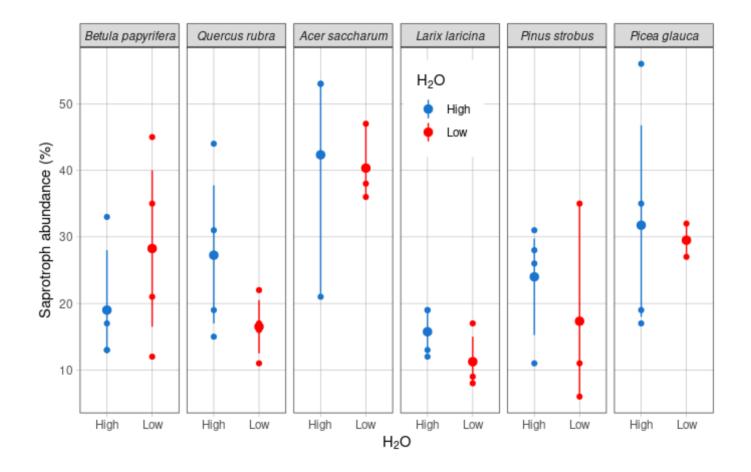
Only Aphelidiomycota marginally shift with H2O

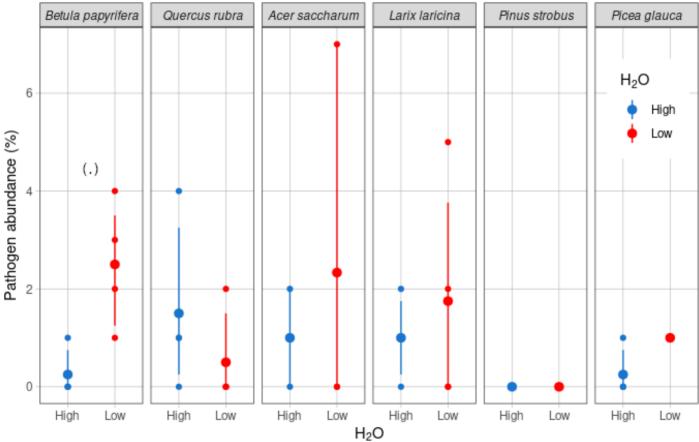
Soil fungal communities for each tree species and water treatment

Conclusion

- Tree species-specific fungal response
- Slower growing species (*Acer saccharum & Picea glauca*) might be more vulnerable
- Root branching density more important for fungi than root surface area
- Fungal functional group influence on tree productivity stronger than root traits


References


Belluau, M., Vitali, V., Parker, W. C., Paquette, A., & Messier, C. (2021). Overyielding in young tree communities does not support the stress-gradient hypothesis and is favoured by functional diversity and higher water availability. Journal of Ecology, 109(4), 1790–1803. https://doi.org/10.1111/1365-2745.13602


Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., & Allen, C. D. (2022). Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annual Review of Plant Biology, 73(1), 673–702. https://doi.org/10.1146/annurev-arplant-102820-012804

McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo, D., Helmisaari, H.-S., Hobbie, E. A., Iversen, C. M., Jackson, R. B., Leppälammi-Kujansuu, J., Norby, R. J., Phillips, R. P., Pregitzer, K. S., Pritchard, S. G., Rewald, B., & Zadworny, M. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207(3), 505–518. https://doi.org/10.1111/nph.13363

Reich, P. B., Bermudez, R., Montgomery, R. A., Rich, R. L., Rice, K. E., Hobbie, S. E., & Stefanski, A. (2022). Even modest climate change may lead to major transitions in boreal forests. Nature, 608(7923), 540–545. https://doi.org/10.1038/s41586-022-05076-3

Root traits

Traits	Hypothesized function	Predicted response to H ₂ O
Architecture		
Root branching density (n cm ⁻¹)	Absorptive capacity, foraging precision, resistance to and avoidance of drought	Increase under drought
System and distribution		
Root length density (cm cm ⁻³)	Spatial coverage of a given soil volume, water acquisition and resistance to and avoidance of drought (exploitation intensity)	Decreased under drought
Morphology		
Specific root length (m g ⁻¹)	Length of roots exploring or exploiting the soil per unit root mass invested, water acquisition and plant resistance to and avoidance of drought	Varied response
Root tissue density (g cm ⁻³)	Recalcitrance and desiccation resistance	Predominantly no effect of drought, or increased under lower precipitation