Urban bioaerosols along socio-economic and vegetation gradients

Sarah Poirier¹, Catherine Girard², Isabelle Laforest-Lapointe¹ 1. Département de biologie, Université de Sherbrooke; 2. Département des sciences fondamentales, UQAC

INTRODUCTION

Université de Sherbrooke

In Canada, 71.7% of the population lives in cities⁴ where urban sprawl and human activities are a huge source of airborne contaminants¹. Bioaerosols are fine airborne particles that come from living organisms².

Pollen and microbes are therefore bioaerosols and are the ones this study focuses on. Pollen is a plant reproductive particle that is known as an allergen. Pollen allergies are seasonal due to the reproductive cycle of trees so symptoms can be more severe at certain times of the year and in certain locations.

Microorganisms, on the other hand, are ubiguitous in the environment³, including urban air, and may have an unexpected effect on allergic respiratory problems. However, urban air is not the same everywhere in the same city. Neighborhoods with low economic status have been shown to have less vegetation than those with high socioeconomic status.

OBJECTIVES AND HYPOTHESIS

PRINCIPAL OBJECTIVE

Objective:

Quantify and identify pollen and microorganisms in urban air along socio-economic, vegetation and time gradients.

Hypothesis:

- 1. The density and diversity of these bioaerosols will be directly correlated with the amount and diversity of the surrounding vegetation.
- The quantity and diversity of microorganisms in urban air is correlated with the socio-economic gradient.

METHODOLOGICAL OBJECTIVE

Objective:

Determine the most effective method for tracking pollens and airborne microorganisms.

Hypothesis:

The active method will be more effective in monitoring these bioaerosols.

PRINCIPAL OBJECTIVE

EXPERIMENTAL FRAMEWORK

Low vegetation index (i.e. high surface High vegetation index (i.e. low surface

Income level (median household inco

20k-50k 50k-100k 100k-150k

METHODOLOGICAL OBJECTIVE

New Frontiers in Research Fund Fonds Nouvelles frontières en recherche

	IMPORTANCE ET IMPACT	
e temperature) e temperature) e temperature)	Understand	Understanding the role of bioaerosol quantity and diversity in human respiratory diseases.
xtraction	Advance	Advancing knowledge of microorganisms and pollen types in urban outdoor air.
	Discover	Discover the differences between air pollens and microbes according to the socio-economic status of neighborhoods.

AKNOWLEDGEMENIS

I would like to thank Jérémy Fraysse, Ema Lussier, Dr. Maria Faticov and Jennifer Fontaine for their great help with fieldwork, laboratory and preparation.

This project is made possible by funding from the New Frontiers Research Fund and the Université de Sherbrooke.

Figures were produced with BioRender.

RFFFRFNCFS

1. Bowers, R. M., McLetchie, S., Knight, R., and Fierer, N. (2011). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5, 601-612. doi:10.1038/ismej.2010.167.

2. Eduard, W., Heederik, D., Duchaine, C., and Green, B. J. (2012). Bioaerosol exposure assessment in the workplace: the past, present and recent advances. J. Environ. Monit. 14, 334–339. doi: 10.1039/C2EM10717A. 3. Finlay, B. J., and Clarke, K. J. (1999). Ubiquitous dispersal of microbial species. Nature 326 400, 828-828. doi:10.1038/23616.

4. Government of Canada, S. C. (2015). Population and Family Estimation Methods at Statistics Canada. Available at: https://www150.statcan.gc.ca/n1/en/catalogue/91-528-X [Accessed March 11, 2022].

Tauber Trap DNA E

Identification