Using survival analysis to predict the harvesting of forest stands in Quebec, Canada

Melo, L.^{1,2}, Schneider, R.³, Manso, R.⁴, Saucier, J-P ⁵, Fortin, M.^{1,2}

^{1,2} AgroParisTech; INRA – LERFoB, Nancy, France
 ³ Université du Québec à Rimouski, Canada
 ⁴ Northern Research Station, United Kingdom
 ⁵ Ministère des Forêts, de la Faune et des Parcs, Canada

CEF, 01-02/05, Montréal, Canada

Forest management Planning

Forest management Planning

Harvest decision

- Harvest algorithms difficult task \checkmark
- Harvest Models LR : temporal information
 - tree- or plot-level probability -> logistic regression
 - limitations •
- Exact date of the harvest is unknown
 Intervals overlap
 Changes in sampling intensity
 Uneven time intervals

Wang et al., 2013 Thurnher et al., 2011

Harvest decision

✓ Harvest Algorithms difficult task

 Harvest Models : Logistic Regression does not effectively use temporal information

✓ Harvest Models: Survival Analysis

deal with interval-censored data

Lawless, 2003

Harvest decision

✓ Harvest Algorithms difficult task

✓ Harvest Models : Logistic Regression does not effectively use

temporal information

✓ Harvest Models: Survival Analysis

- · deal with interval-censored data
- time-varying explanatory variables
 - Basal Area: between intervals
 - AAC: within intervals

3

Harvest decision

✓ Harvest Algorithms difficult task

✓ Harvest Models : Logistic Regression does not effectively use

temporal information

✓ Harvest Models: Survival Analysis

- · deal with interval-censored data
- time-varying explanatory variables
- multiple levels of explanatory variables
 - Exchange rate
 - Management strategy changes

Lawless, 2003

OBJECTIVE

Develop a survival model to predict the plotlevel harvest occurrence

HYPOTHESES

Time-varying covariates contribute to increasing the model likelihood

METHODS

Dataset

Provincial Forest Inventory Quebec:

-50°N

- Nordic temperate zone: broadleaved and mixed stands
- Boreal zone: coniferous stands

- 12,596 intervals 1988:2014
- Uneven intervals: 2 to 6 measures/plot

Dataset

Explanatory Variables

- Interval length (years)
- Spatial Correlation

Dataset

Explanatory Variables

- AAC Regional annual allowable cut volumes
- Countervailing duty
- Exchange rate

Statistical development

Proportional hazard model

Model evaluation

$$h_{ijk}(t) = h_0(t, \boldsymbol{g}_{ijk}\boldsymbol{\gamma})e^{\boldsymbol{x}_{ijk}\boldsymbol{\beta}}$$

• AIC

- 10-fold cross-validation
- Hosmer-Lemeshow test
- ROC AUC

Short-term forecasts (10-year) of harvest probabilities

9

The final model

10

RESULTS

Forecasts

Date

DISCUSSION

Potential of SA to provide annual predictions of harvest occurrence

- Changes: economic conditions, legislation, management practices and length of intervals (Antón-Fernandez, 2012; Thurner et al., 2011).
- Deal with uneven intervals and time-varying regional variables.

Variables

 Low stem density = High probability of harvest (Antón-Fernandez, 2012)
 mature

mature stands

 Spatial correlation improved the model fit (BoWang and Gadow, 2006)

Limitations

- Random effects to account for spatial correlations
- Multiple random effects

DISCUSSION

Contributions

- Strategic level: harvesting probability on a long-term planning horizon
- Applicable to a wide range of forest types
- Coupled to a growth model: generate large-area growth predictions

Contributions

Melo, L.C.; Schneider, R.; Manso, R.; Saucier, J-P.; Fortin, M. Using Survival Analysis to predict the harvest occurrence in forest stands in Quebec, Canada. *Canadian Journal of Forest Research*, **accepted March/2017**.

Merci de votre attention!

laracmelo@gmail.com