DIFFICULT MIGRATION OF TEMPERATE TREE SPECIES IN BOREAL FOREST UNDER CLIMATE CHANGE?

Steve Vissault, Matthew Talluto, Isabelle Boulangeat and Dominique Gravel

CONTEXT THE BOREAL-TEMPERATE ECOTONE

The surface of the boreal-temperate forests ecotone is **expected to shift over** the next 100 years.

CONTEXT THE BOREAL-TEMPERATE ECOTONE

1. The location of this ecotone is **responsive to climate**.

Goldblum and Rig, 2010

CONTEXT PREDICTED FUTURE SPECIES DISTRIBUTION

2. Several temperate forest species are predicted to **shift northward** under climate change

Yellow birch

Red oak

American ash

CONTEXT PREDICTED FUTURE SPECIES DISTRIBUTION

2. Several temperate forest species are predicted to **shift northward** under climate change

Future climate enveloppe of Sugar maple (2071-2100)

McKenney et al., 2007

CONTEXT LIMITS AND DIFFICULTIES IN THIS STUDY CONTEXT

Forest have:

- 1. Limited dispersions
- 2. Slow population dynamics
- 3. Interspecific competition

5 Travis *et al.*, 2013

CONTEXT LIMITS AND DIFFICULTIES IN THIS STUDY CONTEXT

Forest have:

- 1. Limited dispersions
- 2. Slow population dynamics
- 3. Interspecific competition

These components will be affected by future climate

5 Travis *et al.*, 2013

CONTEXT MODELLING COMPROMISE

STUDY OBJECTIVE

Main objective: Assess range shift and migration rates of the temperate forest community toward boreal forest under climate change.

STUDY OBJECTIVE

Main objective: Assess range shift and migration rates of the temperate forest community toward boreal forest under climate change.

Why?

- Predict the future distribution of temperate species community in Quebec
- Improve and adapt our forests management practices under climate change

Model Description

- Lanscape scale
- 4 States:
 - T, Temperate
 - B, Boreal
 - M, Mixed
 - R, corresponds to a post-disturbance
- Spatially explicit and stochastic model

Ecological processes:

Disturbance

Ecological processes:

- Disturbance
- Succession

Ecological processes:

- Disturbance
- Succession
- Colonization

Ecological processes:

- Disturbance
- Succession
- Colonization
- Competitive exclusion

Ecological processes:

- Disturbance
- Succession
- Colonization
- Competitive exclusion

Each probability depends on:

- Proportion of states available in the neighborhood
- Local climatic conditions (Precipitation, Temperature)

DATA THE QUICC-FOR DATABASE

Forest permanent plots databases USA Ontario Québec **New-Brunswick** Temporary tables F(x) Final relational database QUICC-FOR Climatic data Postgres 9.3 ANUSPLIN

CALIBRATION DATA USED

1. Classify state of each plot

- Plot remeasured
- Transition observed between remeasurements

CALIBRATION DATA USED

1. Classify state of each plot

- Plot remeasured
- Transition observed between remeasurements

CALIBRATION DATA USED

1. Classify state of each plot

- Plot remeasured
- Transition observed between remeasurements
- Compute state transition probabilities based on the actual climate and neighbors plot states.

CALIBRATION TRANSITION PROBABILITIES OVER CLIMATIC GRADIENTS

SIMULATIONS PREDICT THE NEXT TIMESTEP

RESULTS PREDICT THE CURRENT LANDSCAPE

Current states distributions predicted on climatology: 1970-2000

RESULTS PREDICT THE CURRENT LANDSCAPE

Temperature increase linearly (4°C): 2100

RESULTS MIGRATION RATE PREDICTED

SUMMARY

- Spatial dynamique, demography and species interactions constraint temperate migration
- 2. Slow temperate migration rate predicted by the STM
- 3. Tension between potential and realized distribution (at equilibrium with climate)

AKNOWLEDGEMENTS

Funded by

In collaboration with

CALIBRATION EXTRA SLIDES

$$P(D_{t1}|M_{t0}, \textit{Climate}) = f(\overbrace{\textit{Climate}}, \underbrace{\hat{D}, \hat{M}}_{\text{Step 1. RandomForest}}) \tag{1}$$

BIOCLIMATIC DOMAINS EXTRA SLIDES

