RÉGÉNÉRATION ET DYNAMIQUE

DES POPULATIONS MARGINALES DE CÈDRE

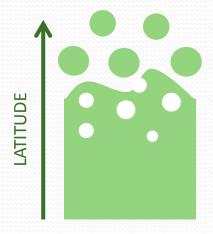
EN FORÊT BORÉALE

Isabelle Visnadi

8^{ème} COLLOQUE DU CENTRE D'ETUDE DE LA FORÊT

29 - 30 avril 2014

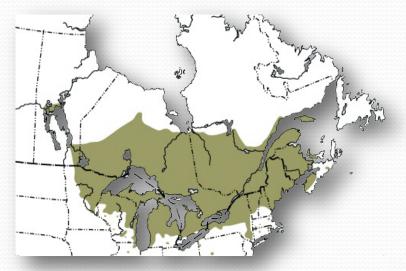
Direction: Yves Bergeron et Christopher Carcaillet (EPHE, France)



Les populations marginales

Limite d'aire de répartition

- Limite de tolérance écologique
- Conditions climatiques peu favorables
- ✓
 ☐ recrutement
- ✓ ☑ richesse spécifique
- ✓
 ✓ risque d'extinction


Forte vulnérabilité

CONTEXTE ET PROBLÉMATIQUE

Modèle biologique

Thuja occidentalis L.

- Amérique du Nord
- Fragmentation latitudinale
- Non adapté aux feux
- Fin de succession

Répartition de *T. occidentalis* en Amérique du Nord www.rncan.gc.ca

Pourquoi le conserver ?

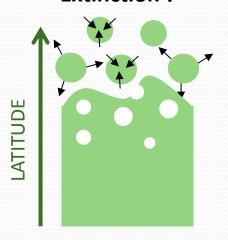
- ✓ Diminution sur l'ensemble de son aire de répartition
- ✓ Maintien prioritaire (MRN 2002)
- √ Valeurs industrielle, écologique et médicinale

Objectifs

Structure et dynamique spatio-temporelle du recrutement

TEMPOREL

→ Taux de recrutement / climat


SPATIAL

→ Facteurs limitant l'expansion

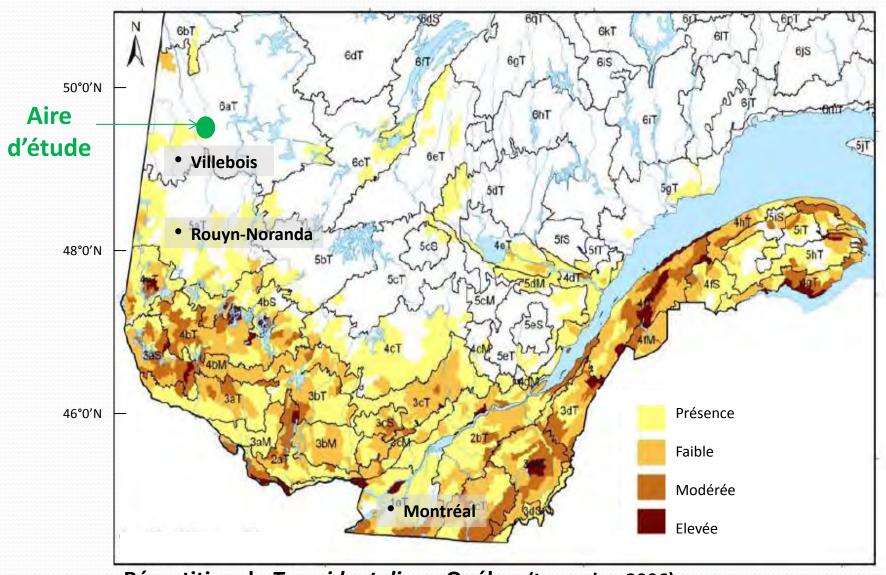
Capacité de maintien et d'expansion ?

Maintien ? Expansion ? Extinction ?

Hypothèses

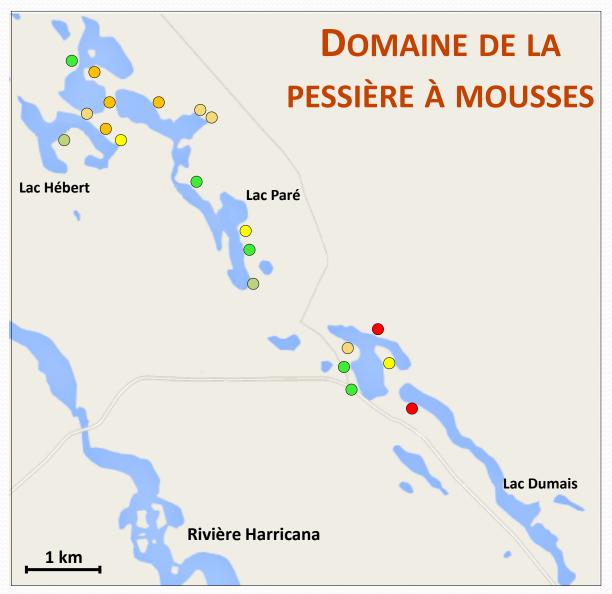
TEMPOREL

✓ La structure démographique reflète les fluctuations climatiques


Agren et Zackrisson 1990, Chuine et Beaubien 2001, Payette et Filion 1985

SPATIAL

- ✓ Le manque de substrat favorable entrave l'établissement des plantules Rooney 2002, Simard 1998, 2003
- ✓ La distance de dispersion des graines limite l'expansion des populations


Turner et al. 2003, Dullinger et al. 2005, Kunstler et al. 2007

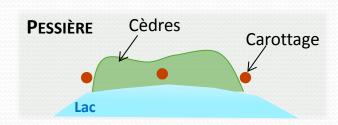
ZONE D'ÉTUDE

Répartition de T. occidentalis au Québec (Larouche, 2006)

Localisation des 20 populations échantillonnées

Superficie des populations (m²)

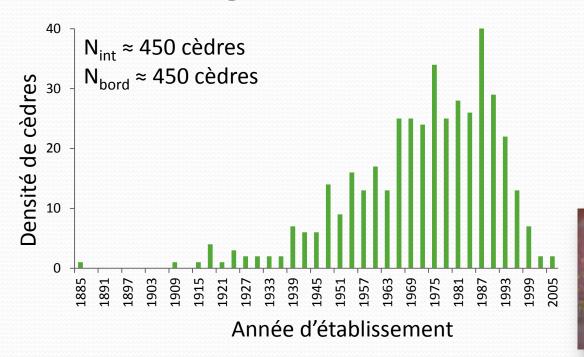
- 0 50
- 50 − 100
- 0 100 200
- **200 400**
- **○** 400 − 3 000
- > 3 000

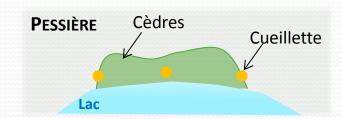

RÉSULTATS: TEMPOREL

Age des populations marginales de cèdre

Age (± écart-type) des plus gros individus présents

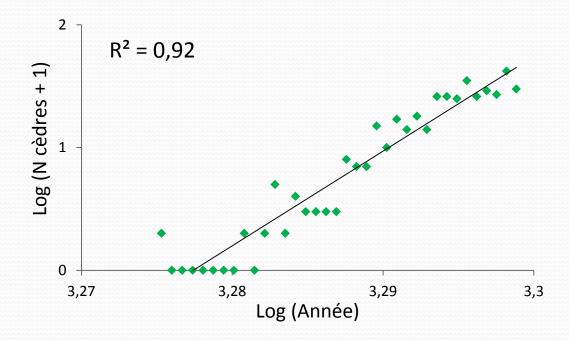
	Age moyen	Age moyen minimum (n=20)
Cèdre	104 ± 48 (n=52)	150 ± 88
Épinette noire	85 ± 37 (n=50)	111 ± 40
Sapin	82 ± 30 (n=54)	105 ± 26


✓ Pas (ou très peu) de cèdres morts



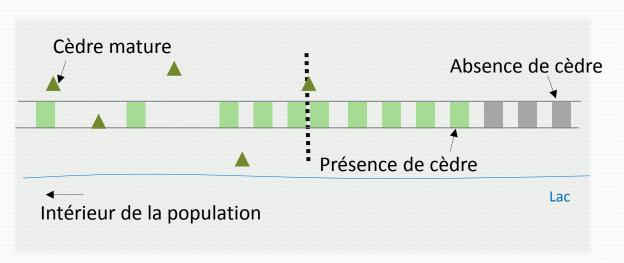
RÉSULTATS: TEMPOREL

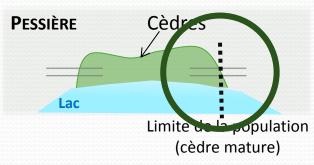

Structure d'âge

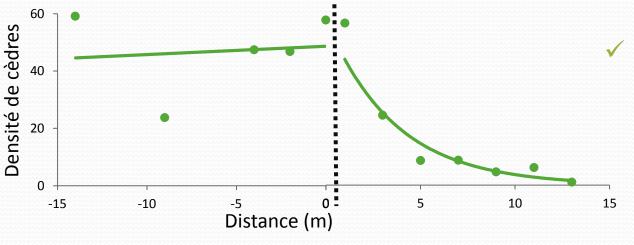


Aucun lien avec les variations climatiques

Structure d'âge et nature du recrutement

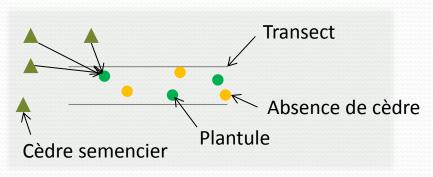

✓ Fonction Exponentielle négative : $y = y_0 e^{-bx}$



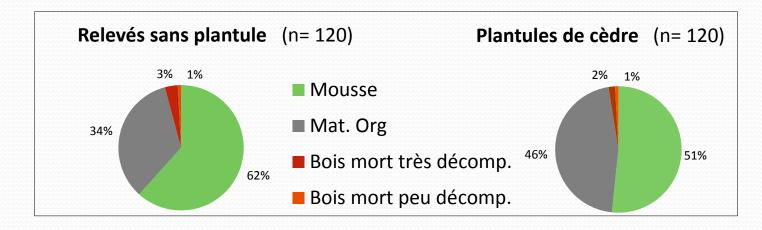

- ✓ Bonne adéquation de la fonction aux données
 - → Taux net de recrutement constant

RÉSULTATS: SPATIAL

Structure spatiale des populations marginales

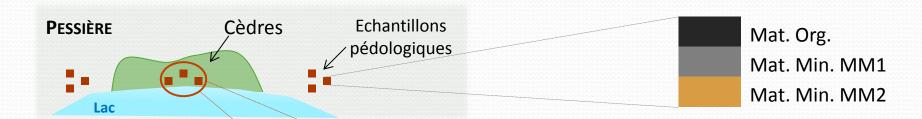


Diminution **exponentielle** significative :


$$R^2 = 0.910$$
; $p < 0.01$

Substrat préférentiel

Régressions logistiques appariées


- ✓ Pas d'effet du substrat
- Effet négatif significatif de la distance

RÉSULTATS: SPATIAL

Analyses pédologiques

Echantillonnage

Matière minérale

(granulo et chimique)

Pas de différence significative

Matière organique

- ✓ CEC + élevée (p = 0,02)
 - → Meilleur turn-over des nutriments
- \checkmark + de Ca et Mg (*p* = 0,03)
 - \rightarrow Acidité moindre (p = 0.06)

Maintien des populations de cèdre

- Populations anciennes, faible mortalité, espèce longévive
 - → Persistance malgré des conditions « hostiles »

Le marcottage semble prépondérant

- Courbure basale et lien connectif
- Recrutement constant et non lié au climat

Reproduction végétative

H1 rejetée:

Recrutement // climat

Avantages du marcottage

- Individus résistants
- Occupation efficace de l'espace
- Compense la reproduction sexuée

Structure agrégée

Des conditions édaphiques favorables

Substrat superficiel disponible et favorable

✓ Similaire à l'intérieur et à l'extérieur des sites

H2 rejetée: Manque de substrat favorable

MO répond aux exigences écologiques (germination et marcottage)

- ✓ Bien décomposée et riche en nutriments
- ✓ Humide, moins acide

Effet top-down du cèdre sur la MO

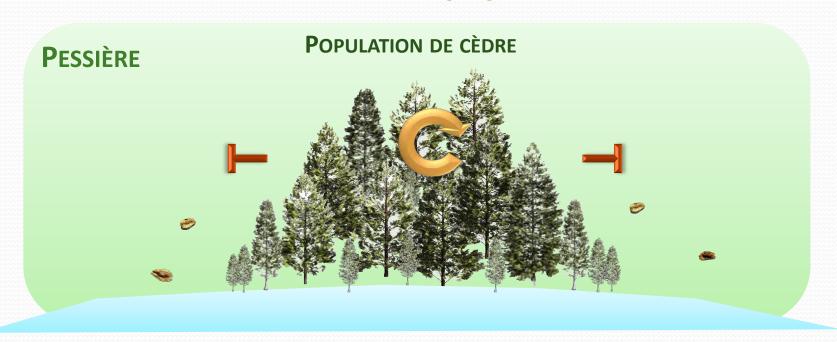
- Espèce calciphile
- ✓ Croissance corrélée + au Ca, Mg

Et dans le futur?

Une densification possible

✓ Projections climatiques →
✓ Reproduction

Une expansion spatiale limitée


- ✓ Faible capacité de dispersion (< 60 m) : plantules près des semenciers
- ✓ Marcottage → dispersion limitée (< 13 m)</p>

H3 validée: Distance de dispersion limitante

Une migration peu probable

- Déplacement nordique peu probable
- ✓ ↗ Sévérité et fréquence des feux → défavorable

Maintien de la dynamique mais expansion limitée Densification des populations ?

- Refuges biologiques potentiels
- ✓ Les espèces répondront rapidement au forçage climatique via la reproduction sexuée
- ✓ L'équilibre climat/feux déterminera l'avenir des populations de cèdre

Merci

Marc Mazerolle, Danielle Charron, Raynald Julien, David Paré, Igor Drobyshev, Marie-Hélène Longpre, Mélanie Desrochers, Osvaldo Valéria

Mon comité d'encadrement : Yves Bergeron, Christopher Carcaillet, Hugo Asselin, Francine Tremblay

Les aides de terrain! Edith, Marc-Olivier, Lucas, Clément, Raphaël

Références (discussion)

Archambault et Bergeron 1992 ; Asselin et al. 2001 ; Bergeron et al. 2006 ; Blanchet 1982 Boulfroy et al. 2012 ; Caccianiga et Payette 2006 ; Cornett et al. 1997 ; Eichhorn 2010 Fayle et Scott 1995 ; Flannigan et al. 2005 ; Ghalambor et al. 2007 ; Girardin et al. 2013 Liu 1990 ; Lloyd et al. 2005 ; Harada et Iwasa 1996 ; Krause 2006 ; Laberge et al 2001 Légère et Payette 1981 ; MacDonald et al. 1998 ; Matthes et al. 2008 Morin and Payette 1984 ; Murphy 1987 ; Oddou-Muratorio et al. 2004 Payette et Filion 1985 ; Payette et Lavoie 1994 ; Pregitzer 1990 ; Sirois 1997 Rooney et al. 2002 ; Scott et Murphy 1987 ; Simard et al. 2003 ; Thuiller et al. 2008