Tropical Forest Dynamics and its Impacts

Colin Chapman McGill University

Not just document change, understand, and predict it

Outline

- (1) Forest change
- (2) Climate change & plant chemistry
- (3) Overall impact on primate populations(4) Conclusions

Changes in Forest Composition 1989-2013

Markhamia lutea

Celtis durandii

Elephant Density is Increasing

 Elephant induced changes? 1) Abundance of elephant preferred tree food species did not change 2) Counter to prediction trees capable of resprouting did not increase 3) Did not alter the composition of old-growth forest 4) Arresting forest succession in disturbed areas

 Elephant induced changes? Arrested Succession:

 increase in basal area in logged areas is almost zero.
 regeneration in a restored area is being slowed

Outline

- (1) Forest change
- (2) Climate change & plant chemistry
- (3) Overall impact on primate populations(4) Conclusions

Global Climate

– The earth's climate has warmed by approximately 0.6 °C in the past 100 years.

–Some estimates suggest that the climate could warm by up to 5.8 °C this century.

Kibale's Climate

- 300 mm more rainfall/year than at the start of the century
 - less frequent droughts
 - earlier onset of the rainy season
 - 4.4 °C increase in average maximum monthly temperature

Kibale's Climate

- 300 mm more rainfall/year than at the start of the century
 - less frequent droughts
 - earlier onset of the rainy season
 - 4.4 °C increase in average maximum monthly temperature

Predicted Responses of Leaf Nutrients to Climate Change

Diet Component	Increased Temperature	Increased Rainfall	Increased CO ₂
Protein			
Fiber			
Tannins			Î

Leaf quality has declined in the directions predicted by climate change

Outline

- (1) Forest change
- (2) Climate change & Plant chemistry
- (3) Overall impact on primate populations(4) Conclusions

Red Colobus

Black-and-white Colobus

Protein/Fiber Model

Remember: Leaf quality changed

Predict:

Folivorous Primate Populations

Should Decline.

Predict:

Folivorous Primate Populations Should Decline.

BUT THEY ARE STABLE - WHY

Changes in Forest Composition 1989-2013

Changes in Forest Composition

- 2013 shows more food trees
- 2013 shows more quality trees

Outline

- (1) Forest change
- (2) Climate change & Plant chemistry
- (3) Overall impact on primate populations(4) Conclusions

Where are we?

*Red colobus example:*1) Poorer nutrition
2) Increased disease
3) Food trees increasing
4) Population stable

