Réponse des tiges résiduelles à la coupe partielle de peuplements de peuplier faux-tremble (*Populus tremuloides* Michx) en forêt boréale mixte

Arun Bose, Suzanne Brais et Brian D. Harvey

8^e Colloque annuel du Centre d'étude de la forêt (CEF), 29-30th avril 2014 Jardin botanique de Montréal

Why partial cutting?

Partial cutting has been suggested as a silvicultural tool to implement "ecosystem based forest management"

Partial cutting or any type of retention harvesting could mimic biological legacies of natural disturbances

Is partial cutting a viable practice?

Production perspective

- ✓ Growth or residual trees (Thorpe et al. 2007)
- ✓ Mortality of residual trees (Coates 1997)
- ✓ Recruitment of desired species (Messier et al. 1999)

Is partial cutting a viable practice?

Production perspective

- ✓ Growth or residual trees (Thorpe et al. 2007)
- ✓ Mortality of residual trees (Coates 1997)
- ✓ Recruitment of desired species (Messier et al. 1999)

Ecosystem perspective

✓ Maintaining or creating multiple ecosystem services (Franklin et al. 1997)

Is partial cutting a viable practice?

Production perspective

- ✓ Growth or residual trees (Thorpe et al. 2007)
- ✓ Mortality of residual trees (Coates 1997)
- ✓ Recruitment of desired species (Messier et al. 1999)

Ecosystem perspective

✓ Maintaining or creating multiple ecosystem services (Franklin et al. 1997)

Study site: SAFE (sylviculture et aménagement forestiers écosystémique)

Study site: SAFE-1

Partial cutting treatments

Low-light thinning; 1/3 basal area removal

High-heavy thinning; 2/3 basal area removal

Partial cutting treatments

Potential factors affect growth responses

✓ **Tree age** (Thorpe et al. 2007)

✓ Species type (physiological traits) (Jones et al. 2009)

✓ Size before treatment (Jones and Thomas 2004)

✓ Treatment type (intensity and layout of removal) (Thorpe et al. 2007)

✓ Tree crown status (Thorpe et al. 2007)

✓ Competition among neighbors (Hartmann et al 2009)

✓ Time effect (Thorpe et al. 2007; Jones et al. 2009)

Data collection

1 Site, SAFE-1

- Sample trees: 54
- 27 each from dominant and codominant crown status
- Three treatments; high-heavy thinning, lowlight thinning, and control

Neighborhood mapping for each sample tree 12 years after treatment application

Hypothesis

Tree age (Thorpe et al. 2007) Not Applicable
Species type (physiological traits) (Jones et al. 2009) Not Applicable

✓ Size before treatment (Jones and Thomas 2004): H1-Positive effect

 ✓ Treatment type (intensity and layout of removal) (Thorpe et al. 2007) H2-Positive effect

✓ Tree crown status (Thorpe et al. 2007)
H3: Dominant>Co-dominant

✓ Competition among neighbors (Hartmann et al 2009)
H4-Negative effect

Time effect (Thorpe et al. 2007; Jones et al. 2009)
H5-Linear effect
Initial (2-5 years) growth lag (Thorpe et al. 2007; Jones et al. 2009)
Yes

Data Processing and Labs

Tree ring Width measurement by WinDendro (Regent Instrument)

Measurement varification by COFECHA

Volume measurement by WinStem (Regent Instrument)

Data Analysis

Neighborhood Competition Indices (NCI)

$$NCI = \frac{\sum_{j=1}^{N} (DBH_j)^{\alpha} / (dist_{ij})^{\beta}}{1000}$$

Neighbor size index, $\alpha = 0$, 1, and 2

- Neighbor distance index, $\beta = 0$, 0.5, 1, and 2
- Neighborhood radius limit, R = 6, 8, and 10 m

Canham et al. 2006; Coates et al. 2009; Hartmann et al. 2009

Results: The best NCI model

R (m)	α	β	К	AICc	ΔΑΙϹϲ	AICc weight	LogLik
						(w.)	
6	1	0	5	139.42	0.00	0.30	-64.08
8	1	0	5	140.63	1.21	0.17	-64.69
10	1	0	5	141.05	1.63	0.13	-64.90
10	1	0.5	5	141.10	1.68	0.13	-64.92
8	1	0.5	5	141.25	1.84	0.12	-65.00
6	1	0.5	5	142.15	2.73	0.08	-65.45
10	1	1	5	144.66	5.25	0.02	-66.71
8	1	1	5	145.72	6.31	0.01	-67.24
6	1	1	5	147.34	7.92	0.01	-68.04

Results: The effect of treatment, crown status, NCI and pre-treatment tree size

Model	К	AICc	ΔΑΙϹϲ	w _i
AAVI \sim TREAT+SS+PT	8	-43.73	0.00	0.60
AAVI ~ TREAT+SS+PT+NCI	9	-42.88	0.85	0.40
AAVI \sim TREAT+PT	7	-35.55	8.18	0.00
AAVI ~ TREAT+PT+TREAT:PT	9	-30.13	13.60	0.00
AAVI ~ PT	5	-29.58	14.15	0.00
AAVI ~	15	-28.44	15.30	0.00
TREAT+SS+PT+NCI+TREAT:SS+TREAT:NCI+TREAT:PT				

Parameter	Estimate (β)	Lower 95% Cl	Upper 95% Cl
TREAT1 (1/3 partial-cut vs controls)	0.1003	-0.2489	0.4494
TREAT2 (2.3 partial-cut vs controls)	0.6308	0.2232	1.0383
NCI (neighborhood competition index)	-1.7547	-4.1039	0.5945
PT (pre-treatment size)	0.0798	0.0536	0.1061
SS2 (Co-dominant vs dominant)	-1.0131	-1.4487	-0.5776

Results: The effect of treatment, crown status, NCI and pre-treatment tree size

Results: The effect of treatment, crown status, NCI and pre-treatment tree size

Annual increase in volume of dominant trees was higher by 16.2 dm³yr⁻¹ than that of co-dominants and was proportional to pre-treatment volume growth

Results:

The effect of Time, treatment and crown status

Model	К	AICc	ΔΑΙϹϲ	w _i
AVI~TREAT+SS+TIME+TIME ²	9	-187.36	0.00	0.98
AVI ~TREAT+SS+TIME	8	-183.83	3.53	0.01
AVI~TREAT+SS+TIME+TIME2+TREAT:SS +TREAT:TIME+TREAT:TIME ²	15	-181.32	6.04	0.01
AVI ~TREAT+SS+TREAT:SS	9	-179.63	7.73	0.00
AVI ~TREAT+SS	7	-178.80	8.55	0.00

Parameter	Estimate (β)	Lower 95% Cl	Upper 95% Cl
Time	0.0198	0.0053	0.0242
Time ²	0.008	0.0033	0.0127
TREAT1 (1/3 partial-cut vs controls)	0.2309	-0.1616	0.6234
TREAT2 (2/3 partial-cut vs controls)	0.4696	0.0771	0.862
SS (Co-dominant vs dominant)	-2.1187	-2.4391	-1.7982

Results: Analysis-2, The effect of Time, treatment and crown status

Results: Analysis-2, The effect of Time, treatment and crown status

Annual increase in volume in the 2/3 partial cut was 25.6 % higher than controls over 12 years

Conclusions

✓ Size before treatment (Jones and Thomas 2004):
H1-Positive effect √

✓ Treatment type (intensity and layout of removal) (Thorpe et al. 2007)
H2-Positive effect √

✓ Tree crown status (Thorpe et al. 2007)
H3: Dominant>Co-dominant √

✓ Competition among neighbors (Hartmann et al 2009)

H4-Negative effect X

✓ Time effect (Thorpe et al. 2007; Jones et al. 2009)
H5-Linear effect √
□ Initial (2-5 years) growth lag (Thorpe et al. 2007; Jones et al. 2009)

Acknowledgements

NSERC-FQRNT-BMP Scholarship

Marc Mazerolle, Igor Dorbyshev, Julie Fradette, Henrik Hartmann, Mario Major, Manuella Strukelj, Jeanne Therrien, Suzie Rollin, Hannah Brais-Harvey, Elizabeth Turcotte, Alfred Coulombe, Wissem Menai, Hedi Kebli, Sandrine Pique

