Stand structure and fire intensity explain variation in fire severity in the black spruce moss bioclimatic domain

Yosune Miquelajauregui

Ph.D candidate University Laval Steve Cumming, advisor Sylvie Gauthier, coadvisor Project C*FIRE

Colloque du CEF April 24th, 2013

CONTEXT

- Canadian Forest Fire Behavior Prediction (FBP) System
 - Provides estimates of the potential frontal fire intensities (kW/m) for different fuel types (e.g., C2,C3,M1,M2)
 - Intensity = rate of heat energy released per unit time per unit length of fire front
- Fire severity = ecological effects of a fire
 = % Basal area lost
- Fire severity variation within the C2 fuel type might be due to differences in stand structure (horizontal and vertical)

Active crown fire

Source: Canadian Forest Fire Danger Rating System (CFFDRS)

OBJECTIVE

Determine the threshold (s) in fire intensity at which stand structure becomes important in explaining fire severity patterns.

HYPOTHESIS

The importance of stand structure will be higher at lower fire intensities.

Model to simulate non-spatially fire severity at the 1 ha patch level

(Cumming and Wong 2002)

* Crown fire initiation model (Van Wagner, 1977)

Model to simulate non-spatially fire severity at the 1 ha patch level (Cumming and Wong 2002)

Ecological regions under study

Adapted from: Chabot et al., 2009

Initial fire intensity dataset SOPFEU (1994-2010)

• Fire weather variables

• C2 fuel type

• First day intensity record

Region

1579 fire records available for simulation

Sampling of diameter distributions of pure black spruce and jack pine from 4882 inventory plots (MRNF)

- Horizontal stand structure (Boucher et al. 2003)
 - Shannon-Wiener diameter diversity index
 - Percentage of trees in DBH class 10
 - Percentage of trees in DBH class 14
 - Coefficient of variation
 - Skewness
- Vertical stand structure
 - Forest canopy base height (CBH)
 - Forest canopy bulk density (CBD)

Experimental design

For each model simulation in R we randomly selected

• One plot and an initial intensity for each of the four regions

• Ran the model 24 000 times (3000 per region per species)

Percentage of fire starts that resulted in high severity fires

Severity thresholds are from Perry et al. (2011)

Differences in severity among regions and species

FINDING THRESHOLDS

Two-step approach to model fire severity using non-parametric methods

- **1. Random Forest Analysis (RFA) :** Rank importance of predictors (package R, "randomforest"): **Intensity, Shannon, CBH, CBD, P10**
- **2. Regression Tree Analysis (RTA) :** Examine relationship between the response and important predictors. Recursively partitions the data into smaller groups. Conditional inference trees based on statistical theory (package R, "party")

Regression Tree Analysis

Terminal Nodes

Regression Tree Analysis

Regression Tree Analysis

High fire severity

High fire severity

CONCLUSIONS

- Fire intensity is the most important predictor of fire severity. However stand structure matters particularly at low intensities.
- Shannon diameter diversity index explains variation in fire severity patterns when fire intensity is lower than 557 kW/m. Fire severity in uneven stands is lower than in even stands at low fire intensities.
- At high fire intensities >2000 kW/m the effect of vegetation is less pronounced.

CONCLUSIONS

- Evidence of **heterogeneity in severity patterns** at the patch level for the boreal forest of Quebec (low-moderate-high severity).
- Lower fire severity in jack pine stands compared to black spruce might be due to differences in structure (higher CBH, lower CBD)
- Lower fire severity in A2 region due to longer fire cycles and higher proportion of **uneven** stands (Boucher et al. 2003).

Questions??

Fire model – Modified from Cumming and Wong (2002)

