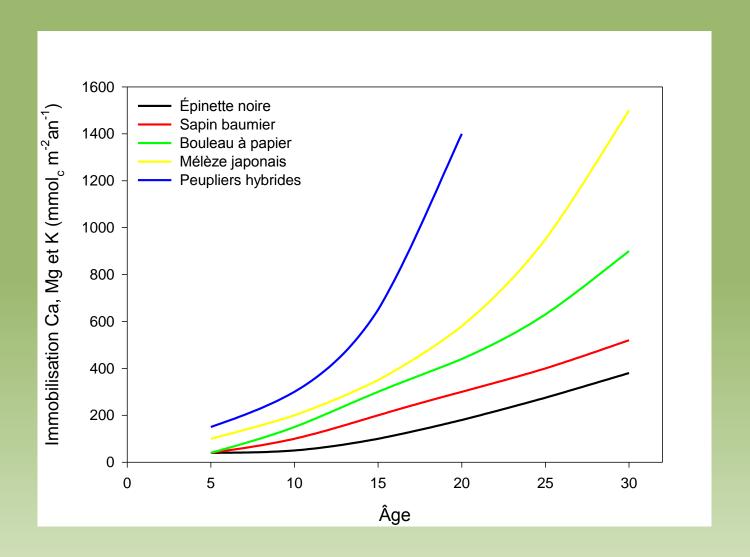
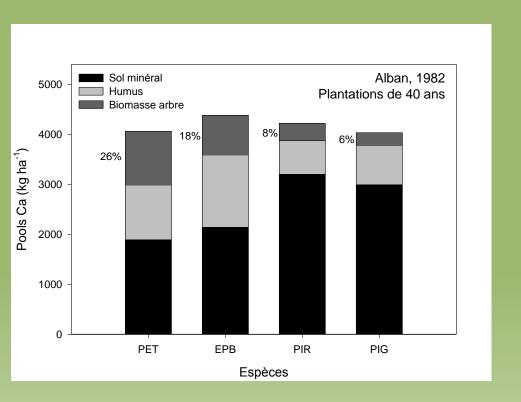
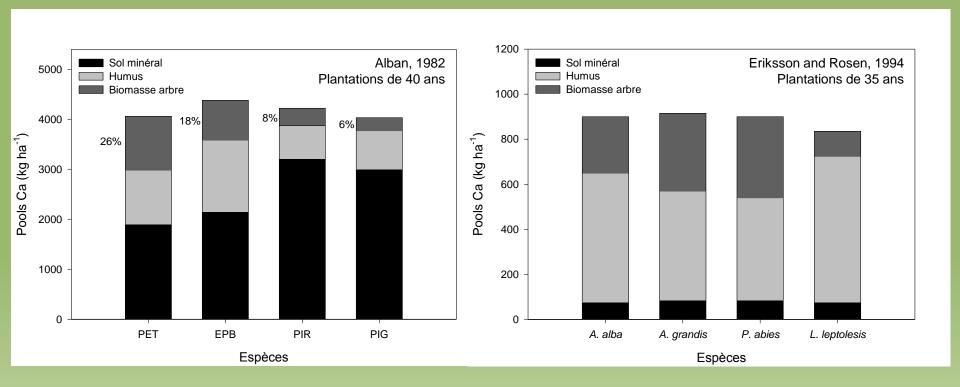
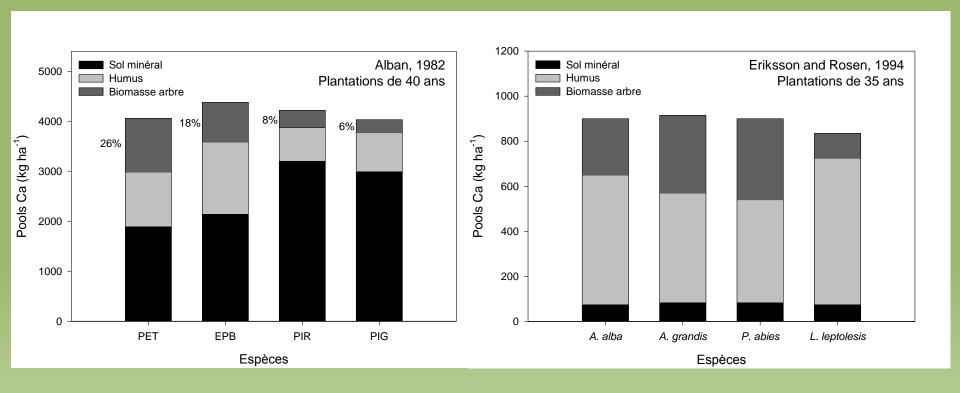


- Demande croissance pour les produits ligneux
 - > FAO, vers 2050


Plantation: ~5-10% surface forestière; 50% bois récolté commercialement


- Demande croissance pour les produits ligneux
 - ➤ FAO, vers 2050 Plantation: ~5-10% surface forestière; 50% bois récolté commercialement
- Intérêt grandissant pour les espèces à croissance rapide
 - ➤ Peuplier hybride (PEH)


- Demande croissance pour les produits ligneux
 - ➤ FAO, vers 2050
 Plantation: ~5-10% surface forestière; 50% bois récolté commercialement
- Intérêt grandissant pour les espèces à croissance rapide
 - ➤ Peuplier hybride (PEH)
- Disponibilité nutriments et rendement soutenu des plantation à long terme?
 - ➤ Hypothèse: Les espèces à croissance rapide, parce qu'ils ont un besoin élevé en nutriments, appauvrissent les sols


- Demande croissance pour les produits ligneux
 - ➤ FAO, vers 2050
 Plantation: ~5-10% surface forestière; 50% bois récolté commercialement
- Intérêt grandissant pour les espèces à croissance rapide
 - Peuplier hybride (PEH)
- Disponibilité nutriments et rendement soutenu des plantation à long terme?
 - ➤ Hypothèse: Les espèces à croissance rapide, parce qu'ils ont un besoin élevé en nutriments, appauvrissent les sols

Effets négatifs des espèces à croissance rapide sur les pools de cations échangeables

Saskatchewan, plantations 20 ans.
Budget nutritif récolte par tronc entier et par arbre entier

Composante du budget	N (kg ha ⁻¹)	P (kg ha ⁻¹)	K (kg ha ⁻¹)	Ca (kg ha ⁻¹)	Mg (kg ha ⁻¹)
Sol	257.0	94.7	2068.0	20439.0	10895.0
Inputs					
Fertilisation	100.0	ND	ND	ND	ND
Précipitation	188.0	30.9	79.2	44.4	12.9
Pluviolessivat	0.0	0.0	45.8	29.2	3.5
Stemflow	0.3	1.2	126.1	42.3	12.2
Altération	0.0	0.0	24.0	539.1	106.6
Outputs					
Récolte					
Tronc	263.1	67.1	435.4	278.7	67.0
Feuille	95.6	8.0	80.3	27.5	8.2
Lessivage	18.0	0.0	2.0	36.0	14.0
Total					
Arbre entier	-88.4	-43.0	-242.6	312.8	46.0
Tronc entier	7.2	-35.0	-162.3	340.3	54.2

Saskatchewan, plantations 20 ans. Budget nutritif récolte par tronc entier et par arbre entier

Composante du budget	N (kg ha ⁻¹)	P (kg ha ⁻¹)	K (kg ha ⁻¹)	Ca (kg ha ⁻¹)	Mg (kg ha ⁻¹)
Sol	257.0	94.7	2068.0	20439.0	10895.0
Inputs					
Fertilisation	100.0	ND	ND	ND	ND
Précipitation	188.0	30.9	79.2	44.4	12.9
Pluviolessivat	0.0	0.0	45.8	29.2	3.5
Stemflow	0.3	1.2	126.1	42.3	12.2
Altération	0.0	0.0	24.0	539.1	106.6
Outputs					
Récolte					
Tronc	263.1	67.1	435.4	278.7	67.0
Feuille	95.6	8.0	80.3	27.5	8.2
Lessivage	18.0	0.0	2.0	36.0	14.0
Total					
Arbre entier	-88.4	-43.0	-242.6	312.8	46.0
Tronc entier	7.2	-35.0	-162.3	340.3	54.2

Effets négatifs pas toujours observés

1. Capacité tampon des sols (ex.: argile avec CEC ↗)

- 1. Capacité tampon des sols (ex.: argile avec CEC ↗)
- 2. Filtration des aérosol par la canopée

- 1. Capacité tampon des sols (ex.: argile avec CEC ↗)
- 2. Filtration des aérosol par la canopée
- 3. Réduction du lessivage des nutriments par un usage accru de l'eau

- 1. Capacité tampon des sols (ex.: argile avec CEC ↗)
- 2. Filtration des aérosol par la canopée
- 3. Réduction du lessivage des nutriments par un usage accru de l'eau
- 4. Altération chimique des sol

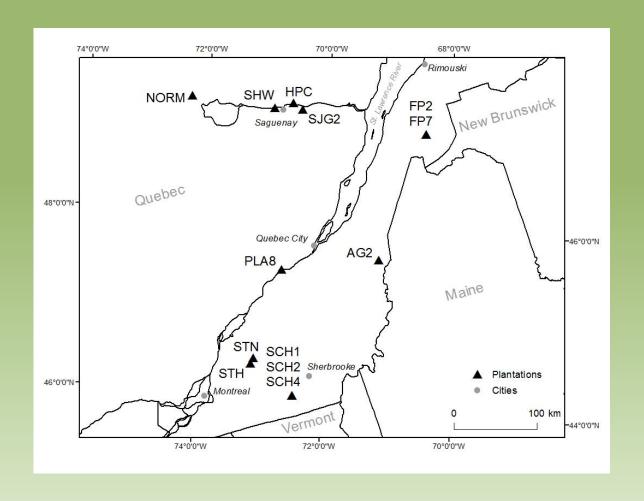
- 1. Capacité tampon des sols (ex.: argile avec CEC ↗)
- 2. Filtration des aérosol par la canopée
- 3. Réduction du lessivage des nutriments par un usage accru de l'eau
- 4. Altération chimique des sol
 - → Production d'acides organiques (diminution du pH des sols)
 - → Dissolution de la structure cristalline du sol minéral
 - → Mise en disponibilité des cations basiques

Effets négatifs pas toujours observés

- 1. Capacité tampon des sols (ex.: argile avec CEC ↗)
- 2. Filtration des aérosol par la canopée
- 3. Réduction du lessivage des nutriments par un usage accru de l'eau
- 4. Altération chimique des sol
 - → Production d'acides organiques (diminution du pH des sols)
 - → Dissolution de la structure cristalline du sol minéral
 - → Mise en disponibilité des cations basiques

P. tremuloides (Qin et al., 2007)

Effets négatifs pas toujours observés

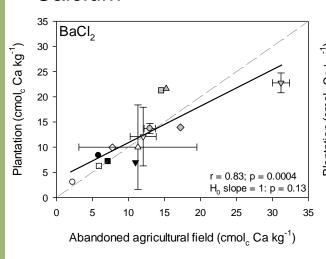

- 1. Capacité tampon des sols (ex.: argile avec CEC ↗)
- 2. Filtration des aérosol par la canopée
- 3. Réduction du lessivage des nutriments par un usage accru de l'eau
- 4. Altération chimique des sol
 - → Production d'acides organiques (diminution du pH des sols)
 - → Dissolution de la structure cristalline du sol minéral
 - → Mise en disponibilité des cations basiques

P. tremuloides (Qin et al., 2007)

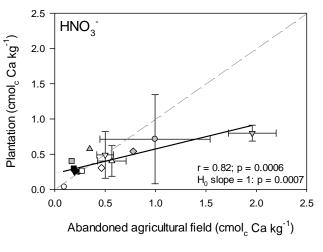
Objectifs

Identifier les effets de l'afforestation avec PEH sur la mise en disponibilité des cations basiques par l'altération des sols

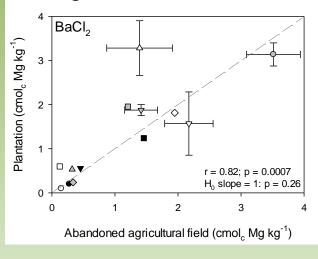
- Québec, 13 plantations (1 à 22 ans), Podzols et Gleysols, argiles et loams
 - P. maximowiczii (× P. deltoides, P. nigra, P. balsamea)

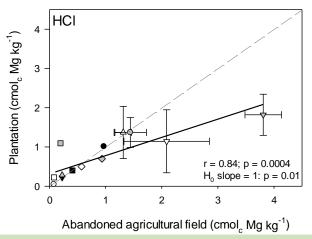

- Québec, 13 plantations (1 à 22 ans), Podzols et Gleysols, argiles et loams
 - P. maximowiczii (× P. deltoides, P. nigra, P. balsamea)
- Échantillonnage des sols: Plantation vs. Champ abandonné

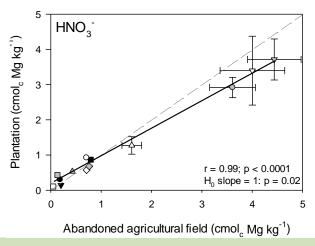

- Québec, 13 plantations (1 à 22 ans), Podzols et Gleysols, argiles et loams
 - P. maximowiczii (× P. deltoides, P. nigra, P. balsamea)
- Échantillonnage des sols: Plantation vs. Champ abandonné
- Chimie des sols:

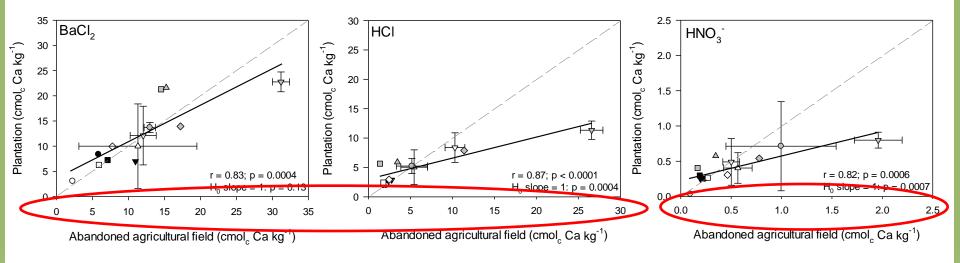

- Québec, 13 plantations (1 à 22 ans), Podzols et Gleysols, argiles et loams
 - P. maximowiczii (× P. deltoides, P. nigra, P. balsamea)
- > Échantillonnage des sols: Plantation vs. Champ abandonné
- Chimie des sols:
 - A) Lessivage séquentiel (Nezat et al., 2007)
 - 1) Cations échangeables 0.1 M BaCl₂
 - 2) Minéraux solubles 0.1 N HCl
 - 3) Minéraux réfractaires 1 N HNO₃

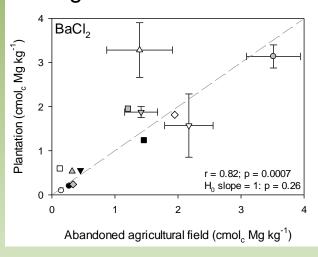
- Québec, 13 plantations (1 à 22 ans), Podzols et Gleysols, argiles et loams
 - P. maximowiczii (× P. deltoides, P. nigra, P. balsamea)
- > Échantillonnage des sols: Plantation vs. Champ abandonné
- Chimie des sols:
 - A) Lessivage séquentiel (Nezat et al., 2007)
 - 1) Cations échangeables 0.1 M BaCl₂
 - 2) Minéraux solubles 0.1 N HCl
 - 3) Minéraux réfractaires 1 N HNO₃
 - B) Analyses physico-chimiques
 - 1) Argile (%)
 - 2) Chimie totale (Ca, Mg, K, Na, Al, Fe, P, Mn, Si)
 - 3) UPPSALA (Apatite, Epidote, Hornblende, Biotite, Quartz...)

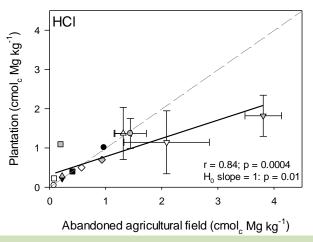

Calcium

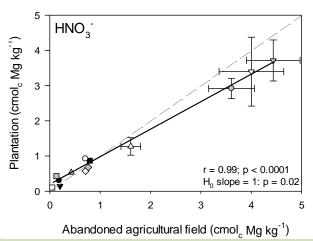





Magnésium






Calcium

Magnésium

Site				Total	chemistr	y			
	SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O ₁	P_2O_5	MnO
	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	(mg kg^{-1})	$(mg kg^{-1})$
AG2	733	125	50.5	14.8	10.5	19.4	16.0	1485	1750
FP7	798	95.3	36.1	11.9	5.2	15.8	12.9	1070	300
SCH4	769	94.3	46.1	14.4	11.6	17.6	16.9	2725	955
HPC	608	202	41.0	15.5	46.3	34.5	21.9	1830	585
SJG2	606	176	67.4	23.8	33.2	28.8	29.7	3175	1405
SCH2	740	102	61.3	16.8	11.6	17.6	17.8	2620	1695
FP2	819	93.9	17.6	6.9	4.9	15.8	15.1	1220	155
SCH1	750	93.6	50.1	29.0	11.5	17.2	17.4	1460	1060
NORM	634	156	63.1	24.4	31.1	31.5	25.4	2145	1125
SHW	596	170	64.3	28.4	44.2	33.0	30.4	2670	1030
PLA8	690	156	49.2	17.3	7.3	10.7	30.2	1480	325
STN	720	127	40.2	9.4	24.4	26.4	25.3	1445	680
STH	728	124	42.1	9.4	21.7	24.4	23.8	1710	800

Site				Total	chemistr	y			
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	MnO
	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(mg kg^{-1})$	(mg kg^{-1})
AG2	733	125	50.5	14.8	10.5	19.4	16.0	1485	1750
FP7	798	95.3	36.1	11.9	5.2	15.8	12.9	1070	300
SCH4	769	94.3	46.1	14.4	11.6	17.6	16.9	2725	955
HPC	608	202	41.0	15.5	46.3	34.5	21.9	1830	585
SJG2	606	176	67.4	23.8	33.2	28.8	29.7	3175	1405
SCH2	740	102	61.3	16.8	11.6	17.6	17.8	2620	1695
FP2	819	93.9	17.6	6.9	4.9	15.8	15.1	1220	155
SCH1	750	93.6	50.1	29.0	11.5	17.2	17.4	1460	1060
NORM	634	156	63.1	24.4	31.1	31.5	25.4	2145	1125
SHW	596	170	64.3	28.4	44.2	33.0	30.4	2670	1030
PLA8	690	156	49.2	17.3	7.3	10.7	30.2	1480	325
STN	720	127	40.2	9.4	24.4	26.4	25.3	1445	680
STH	728	124	42.1	9.4	21.7	24.4	23.8	1710	800

Site				Total	chemistr	y			
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	MnO
	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(g kg^{-1})$	$(mg kg^{-1})$	(mg kg^{-1})
AG2	733	125	50.5	14.8	10.5	19.4	16.0	1485	1750
FP7	798	95.3	36.1	11.9	5.2	15.8	12.9	1070	300
SCH4	769	94.3	46.1	14.4	11.6	17.6	16.9	2725	955
HPC	608	202	41.0	15.5	46.3	34.5	21.9	1830	585
SJG2	606	176	67.4	23.8	33.2	> 28.8	29.7	3175	1405
SCH2	740	102	61.3	16.8	11.6	17.6	17.8	2620	1695
FP2	819	93.9	17.6	6.9	4.9	15.8	15.1	1220	155
SCH1	750	93.6	50.1	29.0	11.5	17.2	17.4	1460	1060
NORM	634	156	63.1	24.4	31.1	31.5	25.4	2145	1125
SHW	596	170	64.3	28.4	44.2	33.0	30.4	2670	1030
PLA8	690	156	49.2	17.3	7.3	10.7	30.2	1480	325
STN	720	127	40.2	9.4	24.4	26.4	25.3	1445	680
STH	728	124	42.1	9.4	21.7	24.4	23.8	1710	800

Site				Mineralog	y (%)				
	Quartz	K-Feldspar	Plagioclase	Muscovite	Hornblende	Chlorite	Apatite	Epidote	Calcite
AG2	58.1	9.27	22.1	3.28	2.06	4.28	0.37	0.53	0.00
FP7	68.3	7.24	17.4	2.56	0.00	3.97	0.26	0.20	0.00
SCH4	60.9	9.60	19.0	3.40	2.10	3.83	0.66	0.46	0.00
HPC	19.5	11.6	37.7	4.10	23.2	0.00	0.45	3.13	0.30
SJG2	24.7	17.5	31.5	6.20	15.4	1.76	0.79	2.15	0.00
SCH2	58.3	10.5	19.3	3.70	2.25	4.85	0.66	0.47	0.00
FP2	69.4	8.50	16.9	3.01	0.00	1.67	0.29	0.19	0.00
SCH1	55.4	9.77	18.1	3.46	3.24	9.18	0.35	0.55	0.00
NORM	27.2	14.1	34.6	5.00	13.5	2.90	0.52	2.07	0.00
SHW	16.0	16.9	35.0	5.97	21.9	0.73	0.63	2.92	0.00
PLA8	56.2	20.1	9.45	7.13	2.36	4.11	0.39	0.17	0.00
STN	41.4	13.9	27.6	4.93	10.2	0.00	0.34	1.54	0.00
STH	45.7	13.3	25.8	4.72	8.70	0.00	0.41	1.32	0.00

Site				Mineralog	y (%)				
	Quartz	K-Feldspar	Plagioclase	Muscovite	Hornblende	Chlorite	Apatite	Epidote	Calcite
AG2	58.1	9.27	22.1	3.28	2.06	4.28	0.37	0.53	0.00
FP7	68.3	7.24	17.4	2.56	0.00	3.97	0.26	0.20	0.00
SCH4	60.9	9.60	19.0	3.40	2.10	3.83	0.66	0.46	0.00
HPC	19.5	11.6	37.7	4.10	23.2	0.00	0.45	3.13	0.30
SJG2	24.7	17.5	31.5	6.20	15.4	1.76	0.79	2.15	0.00
SCH2	58.3	10.5	19.3	3.70	2.25	4.85	0.66	0.47	0.00
FP2	69.4	8.50	16.9	3.01	0.00	1.67	0.29	0.19	0.00
SCH1	55.4	9.77	18.1	3.46	3.24	9.18	0.35	0.55	0.00
NORM	27.2	14.1	34.6	5.00	13.5	2.90	0.52	2.07	0.00
SHW	16.0	16.9	35.0	5.97	21.9	0.73	0.63	2.92	0.00
PLA8	56.2	20.1	9.45	7.13	2.36	4.11	0.39	0.17	0.00
STN	41.4	13.9	27.6	4.93	10.2	0.00	0.34	1.54	0.00
STH	45.7	13.3	25.8	4.72	8.70	0.00	0.41	1.32	0.00

Site				Mineralog	y (%)				
	Quartz	K-Feldspar	Plagioclase	Muscovite	Hornblende	Chlorite	Apatite	Epidote	Calcite
AG2	58.1	9.27	22.1	3.28	2.06	4.28	0.37	0.53	0.00
FP7	68.3	7.24	17.4	2.56	0.00	3.97	0.26	0.20	0.00
SCH4	60.9	9.60	19.0	3.40	2.10	3.83	0.66	0.46	0.00
HPC	19.5	11.6	37.7	4.10	23.2	0.00	0.45	3.13	0.30
SJG2	24.7	17.5	31.5	6.20	15.4	1.76	0.79	2.15	0.00
SCH2	58.3	10.5	19.3	3.70	2.25	4.85	0.66	0.47	0.00
FP2	69.4	8.50	16.9	3.01	0.00	1.67	0.29	0.19	0.00
SCH1	55.4	9.77	18.1	3.46	3.24	9.18	0.35	0.55	0.00
NORM	27.2	14.1	34.6	5.00	13.5	2.90	0.52	2.07	0.00
SHW	16.0	16.9	35.0	5.97	21.9	0.73	0.63	2.92	0.00
PLA8	56.2	20.1	9.45	7.13	2.36	4.11	0.39	0.17	0.00
STN	41.4	13.9	27.6	4.93	10.2	0.00	0.34	1.54	0.00
STH	45.7	13.3	25.8	4.72	8.70	0.00	0.41	1.32	0.00

Hornblende, Apatite, Epidote: solubles et riches en Ca

Chlorite: soluble et riche en Mg

Site				Mineralog	y (%)				
	Quartz	K-Feldspar	Plagioclase	Muscovite	Hornblende	Chlorite	Apatite	Epidote	Calcite
AG2	58.1	9.27	22.1	3.28	2.06	4.28	0.37	0.53	0.00
FP7	68.3	7.24	17.4	2.56	0.00	3.97	0.26	0.20	0.00
SCH4	60.9	9.60	19.0	3.40	2.10	3.83	0.66	0.46	0.00
HPC	19.5	11.6	37.7	4.10	23.2	0.00	0.45	3.13	0.30
SJG2	24.7	17.5	31.5	6.20	15.4	1.76	0.79	2.15	0.00
SCH2	58.3	10.5	19.3	3.70	2.25	4.85	0.66	0.47	0.00
FP2	69.4	8.50	16.9	3.01	0.00	1.67	0.29	0.19	0.00
SCH1	> 55.4	9.77	18.1	3.46	3.24	9.18	0.35	0.55	0.00
NORM	27.2	14.1	34.6	5.00	13.5	2.90	0.52	2.07	0.00
SHW	16.0	16.9	35.0	5.97	21.9	0.73	0.63	2.92	0.00
PLA8	56.2	20.1	9.45	7.13	2.36	4.11	0.39	0.17	0.00
STN	41.4	13.9	27.6	4.93	10.2	0.00	0.34	1.54	0.00
STH	45.7	13.3	25.8	4.72	8.70	0.00	0.41	1.32	0.00

Hornblende, Apatite, Epidote: solubles et riches en Ca

Chlorite: soluble et riche en Mg

Sites sensibles:

- > Riches en minéraux solubles (hornblende, épidote, chlorite, apatite)
- > Forte concentration d'argile (25-55%)

Sites sensibles:

- Riches en minéraux solubles (hornblende, épidote, chlorite, apatite)
- ➤ Forte concentration d'argile (25-55%)

Sites résistants:

- > Riches en minéraux insolubles (quartz)
- ➤ Faible concentration d'argile (5-25%)

Conclusion

- PEH sont capables d'altérer chimiquement les minéraux du sol
- L'altération chimique et la mise en disponibilité des cations basiques opère plus efficacement dans les sols riches (*idem* Finzi, 1998)
- La composition des sols en minéraux solubles (e.g. calcite, apatite, epidote, hornblende) et en argile influencent la susceptibilité des sols à l'altération chimique

Conclusion

- > PEH sont capables d'altérer chimiquement les minéraux du sol
- L'altération chimique et la mise en disponibilité des cations basiques opère plus efficacement dans les sols riches (idem Finzi, 1998)
- La composition des sols en minéraux solubles (e.g. calcite, apatite, epidote, hornblende) et en argile influencent la susceptibilité des sols à l'altération chimique

Calcium

- Au fur et à mesure que la solution de lessivage devient plus "agressive", des minéraux contenant de faibles concentrations de Ca lessivables sont dissouts.
 - Suggère l'accumulation d'un pool de Ca échangeable plutôt large et que les PEH comptent sur ce pool et le cyclage interne du Ca afin de satisfaire leurs besoins nutritifs.
- Pourrait mener à diminution rapide du pool de Ca échangeable en raison de la croissance rapide et de la demande élevée des PEH en Ca

Conclusion

- > PEH sont capables d'altérer chimiquement les minéraux du sol
- L'altération chimique et la mise en disponibilité des cations basiques opère plus efficacement dans les sols riches (idem Finzi, 1998)
- La composition des sols en minéraux solubles (e.g. calcite, apatite, epidote, hornblende) et en argile influencent la susceptibilité des sols à l'altération chimique

Calcium

- Au fur et à mesure que la solution de lessivage devient plus "agressive", des minéraux contenant de faibles concentrations de Ca lessivables sont dissouts.
 - Suggère l'accumulation d'un pool de Ca échangeable plutôt large et que les PEH comptent sur ce pool et le cyclage interne du Ca afin de satisfaire leurs besoins nutritifs.
- Pourrait mener à diminution rapide du pool de Ca échangeable en raison de la croissance rapide et de la demande élevée des PEH en Ca

Magnésium

- Concentrations de Mg homogènes au cours du lessivage
 - Suggère un rôle important de l'altération chimique dans la nutrition en Mg

Pour en savoir plus!

Geoderma 202-203 (2013) 18-29

Contents lists available at SciVerse ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Influence of afforestation on soil: The case of mineral weathering

Benoit Lafleur a, David Paré b, Yves Claveau a, Évelyne Thiffault b, Nicolas Bélanger a,c,*

- Centre d'Étude de la Forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
- b Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
- ^c Téluq, Université du Québec, 5800, rue Saint-Denis, Montréal, QC H2S 3L5, Canada

ARTICLE INFO

Article history:
Received 15 December 2012
Received in revised form 8 March 2013
Accepted 12 March 2013
Available online xxxx

Keywords:
Base cations
Intensive silviculture
Populus
Sequential leach
Long-term soil fertility
Tree nutrition

ABSTRACT

Although concerns have been raised that increased nutrient demand by fast growing tree species could deplete soil nutrient pools, recent research suggests that some species are able to obtain nutrients via soil mineral weathering, Hybrid poplars, which are fast growing and nutrient demanding species, are increasingly used in intensive silvicultural settings. Understanding whether hybrid poplars have an effect on long term nutrient availability and can promote soil mineral weathering is therefore important, We investigated the levels of base cations (i.e. K, Ca, Mg, and Na) of surface soils (0-20 cm) in 13 hybrid poplar plantations in Quebec, and compared the results with those of adjacent abandoned agricultural fields. To evaluate whether exchangeable base cation pools and non-exchangeable pools (i.e. those in the crystal lattice of minerals) were being depleted, we used a sequential leach with diluted salt (BaCl2 for exchangeable) and weak acid solutions (HCl and HNO3 for non-exchangeable). Levels of exchangeable and non-exchangeable cations were not statistically different between land use types. Exploratory analyses, however, revealed trends toward a greater depletion of Ca, Mg and Na in non-exchangeable forms following afforestation. The depletion of these non-exchangeable base cations due to afforestation occurred at sites where greater levels were initially present in soil. The results suggest increased soil mineral weathering due to greater amounts of minerals susceptible to dissolution and, in part, high clay content. Based on Ca, Mg and K concentrations of the different leaches and their molar ratios $(Ca/\Sigma Al + Fe, Mg/\Sigma Al + Fe \text{ and } K/\Sigma Al + Fe)$, we propose a lesser role of soil mineral weathering on Ca cycling than Mg and K, which could lead to faster depletion of exchangeable Ca pools of the surface soil due to fast growth and high Ca demand by the poplars.

© 2013 Elsevier B.V. All rights reserved.

Remerciements

Coauteurs:

Terrain et laboratoire:

David Paré, RNCan, SCF

Marie Bélanger

Evelyne Thiffault, RNCan, SCF

Gilles Thébau

Yves Claveau, Téluq

Ricardo Morin

René Paquet

Alain Courcelles

Saskatchewan:

Initiation du réseau de plantation:

Ken Van Rees

Pierre Périnet

Michael Steckler