
PostGIS WKT Raster
Specifications Version 1.0

Seamless operations 
between vector and raster layers

Pierre Racine (Pierre.Racine@sbf.ulaval.ca)
University Laval, December 2008

These slides:These slides:
• present an argument for the integration of raster data or 

of references to raster data into PostGIS
• suggest specifications of overlay operation between a 

vector layer and a raster layer
• further discuss the specifications of raster integration

–RASTER as a new type of WKT/WKB geometry
–stored inside or outside of the database



Why integrate raster in PostGIS? 
&                                                  

Why are seamless analysis  Why are seamless analysis  
operators important? 



The Case for 
Raster Integration in PostGIS

Why:
• For better or worse, there is great demand for it. Ask yourself:

– How many people do not use (even try) PostGIS because it does not handle 
raster?

– How many people reinvented their own “raster in the database” wheel?

• This is an opportunity to redefine raster (beyond a mere collection of tiles 
in a filesystem) as a:

– coherent continuous coverage of measures, stored and indexed into mutually – coherent continuous coverage of measures, stored and indexed into mutually 
exclusive tiles (for storage efficiency) or objects (for expressiveness) 
comparable to features in a vector layer

– layer in which both tile extents and pixels have significance
– dataset fully integrated with other layers in a GIS context

• This is also an opportunity to implement the foundation of a seamless 
vector-raster analysis toolkit (overlay operations, map algebra, 
interpolation, summaries, etc…), given that spatial analysis is one of the 
next big trend in the geospatial industry.

• PostGIS SHOULD provide a standard solution for every kind of geospatial 
data if we want it to be the BEST foundation for GIS applications, both 
desktop and web-based.



The Case for Seamless 
Operation Between Vector and Raster

Why:
• Most GIS packages offer two different sets of analytical 

tools: one for raster, one for vector data. This makes 
GIS methods harder to learn for novices and time 
consuming for experts.

• It is time to integrate, at the lower level, these tools, 
allowing us to do analysis independently of the data 
representation.

• This would ease the development of applications 
(desktop or web), simplify their GUIs and enhance the 
user experience.



What should be the result of a 
typical operation 

(e.g. intersection) between a 
vector and a raster layer?

3 examples…
The following slides try to design a solution whereby results are  

stored as rasters or vector geometries. 

Three cases will be examined in each example:
-a geometry/geometry operation with results as a vector layer

-a geometry/raster operation with results as a raster layer
-a geometry/raster operation with results as a vector layer

-a raster/raster operation with results as a raster layer

But first a typical SQL postgis geometry/geometry request…



SELECT point, cover, geom, ST_Area(geom) as area
FROM (SELECT ST_Intersection(ST_Buffer(point.geom, 1000),cover.geom) as 
geom, point, cover 
FROM point, cover
WHERE ST_Intersects(ST_Buffer(point.geom, 1000), cover.geom)) cover
ORDER BY area

A simplified but typical SQL vector-only 
overlay operation in PostGIS…

In brief:
•ST_Buffer on a geometry
•ST_Intersection on a geometry
•ST_Area on the result of the previous operation
•ST_Intersects in the ‘where’ clause (we ignore the &&)

Result:

What if the cover 
layer was a raster 
coverage instead?



Example 1Example 1



Example 1 – Simplest Case
Intersection(geometry, geometry) � geometry

1a a1=2

A vector buffer (circle a) is intersected 
with a vegetation cover - type 1 (blue) and 2 (green)

buffer
geometry name
polygon(…) a

cover
geometry type
polygon(…) 1
polygon(…) 2

∩∩∩∩ =
intersection

geometry bufferName coverType
polygon(…) a 1

=

Here, PostGIS implementation is trivial.

Tabular form



r1           r2          r3          r4          r5

r6           r7          r8         r9          r10

Example 1 – Simplest Case
What do we usually do now?

= r12        r13

• Intersection is generally used to select which raster files (tiles) have to be loaded in 
order to construct a display raster (ex. in ArcGIS or MapServer).

• A rectangle (here a circle), representing viewport extent, is intersected with polygons 
representing raster (tiles) extents. Every intersecting polygon is part of the result.

r16        r17        r18        r19         r20

r21        r22        r23        r24         r25

r11        r12        r13 r14         r15

buffer
geometry name
polygon(…) a

∩∩∩∩ =
intersection

geometry bufferName coverTile
polygon(…) a r12
polygon(…) a r13

cover
geometry tile
polygon(…) …
polygon(…) r8
polygon(…) r9
polygon(…) r10
polygon(…) …

This is the existing paradigm where 
raster-vector intersection is used 

merely to “display” raster. 
The raster extent is part of the 

operation, but not the raster data. 
True intersection would take pixel 

values into account…

a 1 2

Tabular form



Example 1 – Simplest Case
Intersection(geometry,raster) � raster

2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

0  0  0  0  0  0  0  0   0  0  0   0  0  0
0  0  0  0  0  0  0  0   0  0  0   0  0  0
0  0  0  0  0  0  0  0   0  0  0   0  0  0
1  1  0  0  0  0  0  0   0  0  0   0  0  0
1  1  1  1  0  0  0  0   0  0  0   0  0  0
1  1  1  1  0  0  0  0   0  0  0   0  0  0
1  1  1  1  0  0  0  0   0  0  0   0  0  0
1  1  1  1  0  0  0  0   0  0  0   0  0  0
1  1  1  1  0  0  0  0   0  0  0   0  0  0
1  1  1  1  0  0  0  0   0  0  0   0  0  0
1  1  1  0  0  0  0  0   0  0  0   0  0  0
1  1  0  0  0  0  0  0   0  0  0   0  0  0
0  0  0  0  0  0  0  0   0  0  0   0  0  0
0  0  0  0  0  0  0  0   0  0  0   0  0  0

a =
0 = nodata

Here the result is ALWAYS 

buffer
geometry name
polygon(…) a

cover
raster

raster(2,2,2…1,1…2,2,2)∩∩∩∩ =

1  1  0  0
1  1  1  0
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  0
1  1  0  0

or  
only

Q1 – What should be the extent of the 
result? Identical to the source raster, or to 

the minimal significant area?

intersection
raster bufferName

raster(0,0,0,1,1…0) a

Tabular form

Here the result is ALWAYS 
in raster form



Example 1 – Simplest Case
Intersection(geometry,raster) � geometry

2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

a
a=

Here the result is ALWAYS 
in vector form

buffer
geometry name
polygon(…) a

cover
raster

raster(2,2,2…1,1…2,2,2)∩∩∩∩ =

2  2  2  2  2  2  2  2  2  2   2   2  2  2

intersection
geometry bufferName
polygon(…) a

in vector form

Q2-Should the result of overlay operations be vectorial or matricial? Or 
should we allow both kind of result?

Tabular form

Here, it is not possible to know the value of intersecting raster pixels (the cover type) 
since there could be many different values. If we want expressive results in vector form, 

we must convert rasters to geometries BEFORE intersecting.



Example 1 – Simplest Case
Intersection(raster,raster) � raster

2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

1  1  0  0
1  1  1  0
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  0
1  1  0  0

with=
a  a  0  0
a  a  a  0
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  0
a  a  0  0

0  0  a  a   a  a  a  0  0
0  a  a  a   a  a  a  a  0
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
0  a  a  a   a  a  a  a  a
0  0  a  a   a  a  a  0  0

buffer
raster

raster(2,2,2…1,1…2,2,2)

cover
raster

raster(2,2,2…1,1…2,2,2)∩∩∩∩ =

2  2  2  2  2  2  2  2  2  2   2   2  2  2

intersection
name raster

a raster(band(1,1,0…0),band(a,a,0…0))

Tabular form

Here, the result must be stored in a multi-band raster.
To obtain a result similar to the 

geometry/geometry � geometry operation 
we must vectorize the resulting rasters AFTER the intersection and, morevover, this 

vectorization must take into account both band.



Example 2Example 2



Example 2 – Mutually Exclusive Polygons
Intersection(geometry,geometry) � geometry

1

a b

2

a1 b1 b2=

buffer
geometry name

polygon(…) a
polygon(…) b

cover
geometry type

polygon(…) 1
polygon(…) 2

∩∩∩∩ =
intersection

geometry bufferName coverType
polygon(…) a 1
polygon(…) b 1
polygon(…) b 2

Here also, PostGIS implementation is trivial.

Tabular form



Example 2 – Mutually Exclusive Polygons
Intersection(geometry,raster) � raster 

2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

a =b

1  1  0  0
1  1  1  0
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  0
1  1  0  0

2  2  2   2  0  0
2  2  2   2  2  0
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  0
2  2  2   2  0  0

0  0  1
0  1  1
1  1  1
1  1  1
1  1  1
1  1  1
1  1  1
0  1  1
0  0  1

and

buffer
geometry name
polygon(…) a
polygon(…) b

cover
raster

raster(2,2…1,1…2,2,2)
∩∩∩∩ =

2  2  2  2  2  2  2  2  2  2   2   2  2  2

intersection
raster bufferName

raster(1,1,0…0) a
raster(0,0,1…2,2,2…0) b

Tabular form

Here, to obtain a result similar to the 
geometry/geometry � geometry operation 

we must vectorize the resulting rasters AFTER the intersection.



Example 2 – Mutually Exclusive Polygons
Intersection(geometry,raster) � geometry

2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2

a b a b=

buffer
geometry name
polygon(…) a
polygon(…) b

cover
raster

raster(2,2,2…1,1…2,2,2)
∩∩∩∩ =

1  1  1  1  1  1  1  1  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

intersection
geometry bufferName
polygon(…) a
polygon(…) b

Tabular form

Here also, it is not possible to know the value of intersecting raster pixels (the cover 
type) without polygonizing the raster according to pixels values. If we want expressive 

results in vector form, we must then convert rasters to geometries BEFORE intersecting.



2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2
1  1  1  1  1  1  1  1  2  2   2   2  2  2

0  0  a  a   a  a  a  0  0
0  a  a  a   a  a  a  a  0
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
0  a  a  a   a  a  a  a  a
0  0  a  a   a  a  a  0  0

0  0  b  b  b  b  b  0  0
0  b  b  b  b  b  b  b  0
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
0  b  b  b  b  b  b  b  b
0  0  b  b  b  b  b  0  0

Example 2 – Mutually Exclusive Polygons
Intersection(raster,raster) � raster 

= with

1  1  0  0
1  1  1  0
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
1  1  1  0
1  1  0  0

a  a  0  0
a  a  a  0
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  0
a  a  0  0

0  0  b  b  b  b  b  0  0
0  b  b  b  b  b  b  b  0
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
0  b  b  b  b  b  b  b  b
0  0  b  b  b  b  b  0  0

2  2  2   2  0  0
2  2  2   2  2  0
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  2
2  2  2   2  2  0
2  2  2   2  0  0

0  0  1
0  1  1
1  1  1
1  1  1
1  1  1
1  1  1
1  1  1
0  1  1
0  0  1

and with

1  1  1  1  1  1  1  1  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

cover
raster

raster(2,2…1,1…2,2,2)
∩∩∩∩ = intersection

raster
raster(band(1,1,0…1,0,0), band(a,a,0…a,0,0))

raster(band(0,0,1,2…2,0,0), band(0,0,b…b,0,0))

buffer
raster

raster(0,0,a…0,0…b,0,0)

Here also, the result must be stored in a multi-band raster.
To obtain a result similar to the 

geometry/geometry � geometry operation 
we must vectorize the resulting rasters AFTER the intersection and, moreover, this 

vectorization must take into account both band.

Tabular form



Example 3Example 3



a2

Example 3 – Non-Mutually Exclusive Polygons
Intersection(geometry,geometry) � geometry

2

1

a

b

a1

b2

=
and

and

b2

buffer
geometry name
polygon(…) a
polygon(…) b

cover
geometry type
polygon(…) 1
polygon(…) 2

∩∩∩∩ =
intersection

geometry bufferName coverType
polygon(…) a 1
polygon(…) a 2
polygon(…) b 2

Tabular form



=

1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

a

b

1  0  0  0
1  1  0  0
1  1  1  0
1  1  1  1
2  2  2  2
2  2  2  2

2  2  2  0
2  2  0  0

2  2  2  0
2  0  0  0
2  2  0  0
2  2  2  0
2  2  2  0
2  2  2  2
2  2  2  2
2  2  2  0

Example 3 – Non-Mutually Exclusive Polygons
Intersection(geometry,raster) � raster

and

cover
raster

raster(1,1…2,2,2)

2  2  2  2  2  2  2  2  2  2   2   2  2  2

buffer
geometry name
polygon(…) a
polygon(…) b

∩∩∩∩ =
intersection

raster bufferName
raster(1,1,0…2,2…0) a

raster(2,0…2,0) b

Tabular form

Here also, to obtain a result similar to the 
geometry/geometry � geometry operation 

we must vectorize the resulting rasters AFTER the intersection.



1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

a

b

Example 3 – Non-Mutually Exclusive Polygons
Intersection(geometry,raster) � geometry

b

= and

a

cover
raster

raster(1,1…2,2,2)

2  2  2  2  2  2  2  2  2  2   2   2  2  2

buffer
geometry name
polygon(…) a
polygon(…) b

∩∩∩∩ =
Tabular form

b

intersection
geometry bufferName
polygon(…) a
polygon(…) b

Here also, it is not possible to know the value of intersecting raster pixels (the cover 
type) without polygonizing the raster according to pixels values. If we want expressive 

results in vector form, we must convert rasters to geometries BEFORE intersecting.



=

1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
1  1  1  1  1  1  1  1  1  1   1   1  1  1
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2
2  2  2  2  2  2  2  2  2  2   2   2  2  2

1  0  0  0
1  1  0  0
1  1  1  0
1  1  1  1
2  2  2  2
2  2  2  2

2  2  2  0
2  2  0  0

2  2  2  0

2  0  0  0
2  2  0  0
2  2  2  0
2  2  2  0
2  2  2  2
2  2  2  2
2  2  2  0

Example 3 – Non-Mutually Exclusive Polygons
Intersection(raster,raster) � raster

and0  0  b  b  b  b  b  0  0
0  b  b  b  b  b  b  b  0
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b
b  b  b  b  b  b  b  b  b

0  0  a  a   a  a  a  0  0
0  a  a  a   a  a  a  a  0
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
a  a  a  a   a  a  a  a  a
0  a  a  a   a  a  a  a  a
0  0  a  a   a  a  a  0  0

a  a  0  0
a  a  a  0
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  a
a  a  a  0
a  a  0  0

with

b  0  0  0
b  b  0  0
b  b  b  0
b  b  b  0
b  b  b  b
b  b  b  b
b  b  b  0

with

cover
geometry

raster(1,1…2,2,2)

2  2  2  2  2  2  2  2  2  2   2   2  2  2

∩∩∩∩ =
Tabular form

Here also, to obtain a result similar to the 
geometry/geometry � geometry operation 

we must vectorize the resulting rasters AFTER the intersection and 
the vectorization must take into account both band.

b  b  b  b  b  b  b  b  b
0  b  b  b  b  b  b  b  b
0  0  b  b  b  b  b  0  0

intersection
geometry

raster(band(1,0…2,0,0), band(a,a,0…a,0,0))
raster(band(2,0…2,0), band(b,0…b,0))

buffer
geometry

raster(0,0,a…a,0,0)
raster(0,0,b…b,0,0)



Back to our original SQL query…
Our SQL query is very similar to example 3:

• we intersect buffers with a raster forest cover;
• buffers are in vector form and might overlap;

We want a result equivalent to this: 
no matter in which form is
the cover (raster or vector)…

We must be able to compute all the cover areas with the result. We choose to return the 
result of the intersection in raster form. The resulting rasters are smaller and more 
simple to vectorize (RT_AsPolygon) AFTER intersecting than if we would have chosen to simple to vectorize (RT_AsPolygon) AFTER intersecting than if we would have chosen to 
return the result as geometry. In this latter case, we would have had to vectorize whole
and complex rasters BEFORE intersecting. The seamless query looks like:

SELECT point, cover, geom, ST_Area(geom) as area
FROM (SELECT RT_AsPolygon(RT_Intersection(ST_Buffer(point.geom, 1000),cover.rast), ‘RASTER’) 
as geom, point, cover 
FROM point, cover
WHERE RT_Intersects(ST_Buffer(point.geom, 1000), cover.rast)) cover

Only two things are different from the original query:
• the result of RT_Intersection() is explicitely returned as a ‘RASTER’ when the two 

inputs are in different forms. (Not when they are in the same form…)
• the resulting raster layer is vectorized with RT_AsPolygon() to isolate each cover 

raster feature.



Specifications, Open Questions, and 
Some Query ExamplesSome Query Examples



Specifications for raster in PostGIS
• We want multi-band support…
• We want pixel sizes, variable nodata values and variable pixel types…
• Each raster within a coverage is stored as a row in a table. 
• We don’t want to store a specific format (like tiff or jpeg) 

since we will generally store tiles, not images… Images 
should be constructed as aggregates of tiles (rows) using GROUP BY.

We see RASTER as a new type
(like “geometry”).

We must store:We must store:
• For each raster (tile or row)

– the width and the height of the raster
– the pixel size (in the same units as the coordinate system)
– the number of bands for each raster
– a polygon representing the bounding box of the raster
– the georeference (6 floats) (We can probably deduce this from the bbox polygon, the width and

the height.)

• For each band
– the pixel type
– the nodata value
– the data for each band

Possible pixel types
• 1-bit boolean (1BB)
• 2-bit unsigned integer (2BUI)
• 4-bit unsigned integer (4BUI)
• 8-bit signed integer (8BSI)
• 8-bit unsigned integer (8BUI)
• 16-bit signed integer (16BSI)
• 16-bit unsigned integer (16BUI)
• 32-bit signed integer (32BSI)
• 32-bit unsigned integer (32BUI)
• 16-bit float (16BF)
• 32-bit float (32BF)
• 64-bit float (64BF)

Example…



RT_RasterFromText(‘RASTER(2,8,30.0,2,22165.382558570,
785,0,0,-22165.382558570815,-545856.650,7086694.1733, 

Example of WKT raster

width, height
Affine 

transform

���������

��� ������

� �� ���� ��

� �� ���� ��

	 �� ���	 ��

� �� ���� ��

3  7
6  8
9  1
8  9
5  5
6  6

2 band raster
cover       precipitation

Creation of a 2x8 raster with 2 bands (8-bit signed integer and 
16-bit float) similar to ST_GeomFromText(text,[<srid>])

pixel size
number of band

785,0,0,-22165.382558570815,-545856.650,7086694.1733, 
BAND(8BUI,(0,3,7,6,8,9,1,8,9,5,5,6,6,2,2,4,4)),BAND(16BF,(0
.0,1.2,1.2,2.6,2.6,3.4,3.4,4.0,4.0,5.6,5.6,6.3,6.3,7.8,7.8,8.6,8.6)
))’,[<srid>])

1st and 2nd band values

� �� ���� ��


 �� ���
 ��

� �� ���� ��

6  6
2  2
4  4

• WKB form stores data compressed as deflate

pixel type for 1st band and 2nd band

nodata value for 1st band and 2nd band



Raster data inside or outside the database?
• There has been a lot of discussion on this subject. We think it is better to let 

application developers decide what is best for them given a pro & cons list.
– Pro inside

•A single data storage solution (raster are never lost; for small volume, backup is 
more simple).

•Faster for analysis (tiled and indexed, no need to extract data from JPEG file).
•Edition locks provided by DB.

– Pro outside
•Reusable files with faster access (TIFF or JPEG) for thin client (WWW) display. No 
need to convert to JPEG.need to convert to JPEG.

•One time backup (if raster is never edited).
•No importation (involving copy of huge dataset) needed, just registration.

• We can solve this by allowing raster data (only the band arrays in the previous 
WKT form) to be stored on disk (in TIFF or JPEG) and only reference them with a 
path in the WKT/WKB.

• Every function listed below work seamlessly wherever the raster is stored.
• Add RT_GetPath(raster, band) to know the name of the raster file.
• Add –R option to the importer so no data are copied to the DB, only reference to the files.

RT_RasterFromText(‘RASTER(2,8,30.0,2,2,22165.382558570,785,0,0,-
22165.382558570815,-545856.650,7086694.1733,BAND(PT_EXT,0,c:/datastore/ 
landsat/01b1.tif),BAND(PT_EXT,0.0,c:/datastore/landsat/01b2.tif))’,[<srid>])



Some Questions
• Georeference: Is it better to…

– Store only the bbox and derive the 6-floats-georeference from it?
– Store only the georeference and derive the bbox from it?

• Indexing
– Is it possible to build a GiST index from bboxes embedded in the raster geometry? If not, 

how else? Is it a good idea to store it in a different column?
• New WKT/WKB geometry type or set of new composite types?

– Is it better to embed all the raster information in a new WKT/WKB geometry type (like the 
one described earlier) or to create a set of new composite type like:one described earlier) or to create a set of new composite type like:

• raster(‘width’, ‘height’, ‘pixelSize’, ‘nbBand’, ‘bbox’, ‘SRID’, ‘band[]’)
• band(‘pixelType’, ‘noDataValue’)

• Pyramids
– Should pyramids be stored with each raster tile? Doesn’t this lead to an edge effect at 

lower resolutions? Should them not be stored as a separate raster layer instead, as 
vector applications do? It would be up to the application to update pyramids when rasters 
are edited. Maybe both options are useful…

• Lossless data exchange
– It is important that a physical data format supports export and re-import of raster rows 

without loss of information. Is TIFF a suitable/preferred format for all our needs?



Existing Geometry Constructors to Adapt
Existing for geometries, adapted for raster. (With implementation priority in parenthesis - 1,2 or 3)

• RT_Centroid(raster|geometry) � point geometry (3)

• RT_PointOnSurface(raster|geometry) � point geometry (3)

• RT_Buffer(raster|geometry, double) � same type as first arg. (3)

• RT_ConvexHull(raster|geometry) � same type as input (3)

• RT_Intersection(raster|geometry, raster|geometry, ‘raster’|’geometry’)�raster/geometry (1)

• RT_Difference(raster|geometry A, raster|geometry B) � same type as first argument (3)

• RT_SymDifference(raster|geometry,raster|geometry,‘raster’|’geometry’)�raster/geometry (3)

• RT_Union(raster|geometry, raster|geometry, ‘raster’|’geometry’) � raster/geometry (2)

• RT_Accum(raster set|geometry set, ‘raster’|’geometry’) � raster/geometry (2)

• RT_Envelope(raster|geometry) � polygon geometry (1)

• RT_Transform(raster|geometry, SRID) � same type as input (1)

• RT_Affine(raster|geometry,…) � same type as input (3)

• RT_Translate(raster|geometry,…) � same type as input (3)

• RT_Scale(raster|geometry,…) � same type as input (3)

• RT_TransScale(raster|geometry,…) � same type as input (3)

• RT_RotateZ,Y,Z(raster|geometry, float8) � same type as input (3)

• RT_Area(raster|geometry) � double (2)

Functions with the 
‘raster’|’geometry’ string option 
return:

•geometries when both input 
are geometries

• rasters when both input are 
rasters

• the specified type otherwise
Default is to return a geometry



New for raster 
• RT_RasterFromText(string, compression, [<srid>]) (1)

• RT_RasterFromWKB(raster, [<srid>]) (3)

• RT_AsPolygon(raster) � polygon geometry set (1)

• RT_Shape(raster) � polygon geometry (1)

• RT_Band(raster, band) � raster (1)

• RT_Resample(raster, pixelsize, method) � raster (2)

New for raster and geometry

New Geometry Constructors

0  0  0  0  0   0  0  0  0
0  0  0  1  1   2  0  0  0
0  0  1  1  1   2  2  0  0
0  1  1  1  1   2  2  2  0
0  1  1  1  1   2  2  2  0
0  1  1  1  1   2  2  2  0
0  0  1  1  1   2  2  0  0
0  0  0  1  1   2  0  0  0
0  0  0  0  0   0  0  0  0

RT_AsPolygon

and1 2

0 = nodata

New for raster and geometry
• RT_Clip(raster|geometry,geometry) � same type as first argument (3)

• RT_SelectByValue(raster|geometry, ‘expression’) � same type as first argument (2)

• RT_Flip(raster|geometry, ’vertical’|’horizontal’) � same type as first argument (3)

• RT_Reclass(raster|geometry,string) � same type as first argument (2)

• RT_MapAlgebra(raster|geometry, [raster|geometry,…], ‘mathematical expression’, 
‘raster’|’geometry’) � raster/geometry (3)

New for geometry only
• RT_AsRaster(geometry, pixelsize) � raster (2)

• RT_Interpolate(points, pixelsize, method) 
� raster (3)

RT_AsRaster

0  0  1  1
0  1  1  1
1  1  1  1
1  1  1  1
1  1  1  1
0  1  1  1
0  0  1  1

2  0  0
2  2  0
2  2  2
2  2  2
2  2  2
2  2  0
2  0  0

and1 2and



0  0  0  0  0   0  0  0  0
0  0  0  1  1   2  0  0  0

Logical Operators to Adapt
Existing for geometries, adapted for raster, return a boolean.
• Operate on two geometries, a geometry and a raster or two rasters.
• On rasters, only pixels with values are taken into account (not the «nodata» values).
• Implies vectorization of the shape of the raster (RT_Shape) before processing in order to 

isolate pixels with a value from nodata pixels. Should be faster than a true vectorization 
(RT_AsPolygon) since it does not imply creating different polygons for different values.

• BBox operators (&<, &>, <<, >>, &<|, |>&, <<|, |>>, ~=, @, ~, &&) work with 
RT_GetBBox(raster|raster) (1)

• RT_Equals(raster|geometry, raster|geometry) (3)
RT_Shape

0  0  0  1  1   2  0  0  0
0  0  1  1  1   2  2  0  0
0  1  1  1  1   2  2  2  0
0  1  1  1  1   2  2  2  0
0  1  1  1  1   2  2  2  0
0  0  1  1  1   2  2  0  0
0  0  0  1  1   2  0  0  0
0  0  0  0  0   0  0  0  0

• RT_Disjoint(raster|geometry, raster|geometry) (3)

• RT_Intersects(raster|geometry, raster|geometry) (1)

• RT_Touches(raster|geometry, raster|geometry) (3)

• RT_Crosses(raster|geometry, raster|geometry) (3)

• RT_Within(raster|geometry A, raster|geometry B) (2)

• RT_Overlaps(raster|geometry, raster|geometry) (2)

• RT_Contains(raster|geometry A, raster|geometry B) (2)

• RT_Covers(raster|geometry A, raster|geometry B) (3)

• RT_IsCoveredBy(raster|geometry A, raster|geometry B) (3)

• RT_Relate(raster|geometry, raster|geometry, intersectionPatternMatrix ) (3)

0 = nodata



Existing and New Accessors
Existing for geometries, adapted for raster 
• RT_AsText(raster|geometry) (1)

• RT_AsBinary(raster, compression) (2)

• RT_AsKML(raster|geometry) � KML (3)

• RT_AsSVG(raster|geometry) � SVG (3)

• RT_SRID(raster|geometry) � integer (1)

• RT_SetSRID(raster|geometry, integer) (1)

• RT_IsEmpty(raster|geometry) � boolean (2)

• RT_mem_size(raster|geometry) � integer (2)

• RT_isvalid(raster|geometry) � boolean (2)

RT_GetBBox

RT_Envelope

0 = nodata

• RT_GetNumBands(raster) � integer (1)

• RT_GetNoDataValue(raster, band)� string (1)

• RT_SetNoDataValue(raster, band, value) (1)

• RT_GetMaximumValue(raster, band)� pixeltype (1)

• RT_GetMinimumValue(raster, band)� pixeltype (1)

• RT_Count(raster, value) � integer (2)

• RT_GetGeoReference(raster) � string (1)

• RT_SetGeoReference(raster, string) (1)

• RT_SetValue(raster, band, x, y, value) (3)

New for raster
• RT_AsJPEG(raster, quality) � jpeg (2)

• RT_AsTIFF(raster, compression) � TIFF (2)

• RT_GetWidth(raster) � integer (1)

• RT_GetHeight(raster) � integer (1)

• RT_GetPixelType(raster, band) � string (1)

• RT_SetPixelType(raster, band, string) � string (1?)

• RT_GetPixelSize(raster) � integer (1)

• RT_SetPixelSize(raster) � integer (1?)

• RT_GetBBox(raster) � polygon geometry (1)



Five ways to use a WKT raster table…

1- As an incomplete
non-overlapping tiled coverage

• Stored globally as one table

• many images = 1 table = many tile rows

• Not necessarily rectangular; Many edge
tiles may be missing

• Sources is generally a series of 
non-overlapping images that are 
converted to small tiles

• This is the most frequent and traditional way of seeing a coverage

landcover
tileId raster

3 raster(…)
4 raster(…)
… …



Five ways to use a WKT raster table…

2 - As a complete tiled
non-overlapping tiled coverage

• Stored globally as one table

• Necessarily rectangular; No missing tiles

• Sources is generally a series of non-overlapping
images that are converted to small tiles

• many images = 1 table = many tile rows

• A specific case not as frequent as 1) 

landcover
tileId raster

3 raster(…)
4 raster(…)
… …



3 - As a layer of vector like discrete raster objects

• Stored globally as one table

• Very similar to a vector layer; one raster column 
with other columns of attributes per row

Five ways to use a WKT raster table…

• 1 layer = 1 table = many raster object rows

• Source is generally the result of an analysis 
operation implying rasterization of many 
geometries

• RT_AsRaster(geom),
• RT_Intersection(geom, raster,’RASTER’)

• Introduced by WKT Raster to support meaningful raster/vector
operations

Lakes
lakeId code area raster

464 03 32.63 raster(…)
375 02 12.53 raster(…)
… … 6.25 …



Five ways to use a WKT raster table…
4 - As a “big raster”

• Stored as one table
• Necessarily rectangular; No missing tiles
• Sources is generally an images that is stored 

as series of  small tiles
• 1 image = 1 table = many tile rows

landcoverImg
tileId raster

3 raster(…)
4 raster(…)
… …

• However a coverage is generally 
composed of many images.

• In this case:
• many images = many tables of 

many tile rows
• images may overlap

• The classical way of using raster in a 
GIS. Not really useful from an 
analytical point of view since 
the same operations must be 
repeated on each tables

… …

landcoverImg1
tileId raster

3 raster(…)
4 raster(…)
… …

landcoverImg2
tileId raster

3 raster(…)
4 raster(…)
… …



Five ways to use a WKT raster table…

5 - As an image warehouse

• Stored globally as one table

• many images = 1 table = many rows

• Images are not tiled and are not necessarily 
georeferenced

• Not necessarily intended for the geospatial industry

• Source is generally a folder of images

carPictures
Id category geometry

15436 Sport raster(…)
35665 SUV raster(…)

… … …



raster Importer
USAGE: 
raster2pgsql [<options>] rasterfile [rasterfile…] [<schema>.]<table>
• Create an SQL commands file to create a table of raster. If rasterfile is multiband and –b is not specified, every band 

are inserted. Multiple band can also be specified using multiple filenames (rasterfile1 is the first band, rasterfile2 the 
second, etc…). Can process multiple file from a folder.

• georeference (and pixel size) must exist directly in the files or in a companion World File. 

OPTIONS:
• -s <srid>  Set the SRID field. Default is -1.
• -b <nbband> Specify the number of band. The number of rasterfile must correspond to this number.
• -P <pixeltypes> Specify the pixels types in which to store each band. Ex. ‘8-bit unsigned integer,16-bit float’. 

conversion may happens.
• -n <nodata values> Specify the nodata value for each bands. Ex. ‘0,0.0’. Default to ‘none’ for each band.
• -t  <pixels> Divide rasters into <pixels>x<pixels> tiles, one tile per row. Default is to store whole rasters as one row.
• (-d|a|b|c|p) Mutually exclusive options:

– d  Drops the table, then recreates it and populates it with current raster file data.
– a  Appends raster file into current table, must be exactly the same pixel size, number of band, nodata value and pixel type.
– B  Appends raster files as a new bands. When tiled with the –t option, the new band is inserted tiled in the same way as the original band.
– c  Creates a new table and populates it, this is the default if you do not specify any options.
– p  Prepare mode, only creates the table.

• -r <raster_column> Specify the name of the raster column 
(mostly useful in append mode).

• -D  Use postgresql dump format (defaults to sql insert statements).
• -I  Create a GiST index on the bbox of the raster column.
• -? Display this help screen

Should rast2pgsql produce a 
SQL file like shp2pgsql or 
insert rasters directly in 

PostGIS?



Example 1 – Import/Export
Importing existing rasters as raster into PostGIS
>raster2pgsql -s 32198 -t 128 -i forestcover.tif temperature.tif 
public.coverandtemp > c:/temp/coverandtemp.sql
File by file version where each file is spitted into tiles

or
>raster2pgsql -s 32198 -t 128,tid -i c:/forestcoverfolder/ c:/temperaturefolder/ 
public.coverandtemp > c:/temp/coverandtemp.sql
Folder version where each file in each folder is imported and tiled. tid is a target column storing 
a unique identifier for every source file (1,2,3,4,5,6,…) Could also come from part of the filename.a unique identifier for every source file (1,2,3,4,5,6,…) Could also come from part of the filename.

Exporting existing rasters as raster files
>pgsql2raster -f c:/temp/image#.tif -h localhost -p pwd -u user -r raster 
public.coverandtemp
Produce many small files or tiles named image1.tif, image2.tif,…

or
>pgsql2raster -f c:/temp/image.tif -h localhost -p pwd -u user public ‘SELECT 
RT_Accum(RT_Band(raster,1)) FROM coverandtemp WHERE prov=‘BC’ GROUP 
BY prov’
Produce one big multiresolution raster by aggregation of many tiles.



SELECT RT_AsJPEG(RT_Band(raster,2),60)
FROM coverandtemp
WHERE RT_BBox(coverandtemp.raster) &&
ST_GeomFromText(‘POLYGON(-350926 351220,-350926 
199833,-196958 199833,-196958 351220,-350926 
351220)',32198) and 

Example 2
Retrieving tiles intersecting an extent

351220)',32198) and 
RT_Intersects(coverandtemp.raster,ST_GeomFromText('POLYG
ON(-350926 351220,-350926 199833,-196958 199833,-196958 
351220,-350926 351220',32198))

Returns a table of jpeg tiles, from the temperature band, intersecting with the 
specified extent. The intersection takes into account the nodata values (they are 

not part of the geometry).



SELECT max(covertype) as covertype, 
sum(ST_Length(RT_Intersection(cover.raster,roads.geometry))) 
as totallength 
FROM cover, roads
WHERE cover.raster && roads.geometry and 

Example 3 
What is the total length of roads (polylines) crossing

different types of forest cover (raster) ?

WHERE cover.raster && roads.geometry and 
RT_Intersects(cover.raster,roads.geometry)
GROUP BY covertype
ORDER BY totallength

Example of a totally seamless operation 
involving a raster layer and a polyline layer.



SELECT 
RT_SelectByValue(

RT_MapAlgebra(
RT_Reclass(

RT_Resample(
RT_Transform(rast1,32198),

Example 4
Raster-Only MapAlgebra Operation

(possible also between a raster & a vector layer)
One of the coverage has to be reprojected, 

resampled and reclassed before doing a map 
algebra operation with the other coverage. There is 
as many rows in the result as there is tiles having 

equivalent extent in the two coverages. Only pixels 
with value ‘2’ are retained in the final result. 

Coverages are assumed to have only one band.

RT_Transform(rast1,32198),
30,’CUBIC’),

’0-99=0,100-199=1,200-255=2’), 
rast2, ‘int(0.434*A+0.743*B)’),

2)
FROM cover1, cover2
WHERE RT_Transform(rast1,32198) ~= rast2

Only raster having 
equivalent extent 

are part of the 
calculus



SELECT
RT_AsJPEG(RT_Accum(A.raster), 60)
FROM
(SELECT RT_Band(raster, 2)) as raster

Example 5
Rebuilding a regional raster 

from a global coverage

(SELECT RT_Band(raster, 2)) as raster
FROM USACoverage WHERE state=‘NY’) A

Use the same RT_Accum aggregate function 
as the one used with geometry. 



PostGIS WKT raster VS Oracle GeoRaster*

Oracle GeoRaster*…
• is stored as a relation between two 

types in different tables:
– images (SDO_GEORASTER) and
– tiles (SDO_RASTER)

• is very complicated. Supports:

PostGIS WKT Raster…
• is stored as a single type in a table, 

much like the geometry type.
– It does not distinguish the tile 

concept from the image concept. 
Both concepts are interchangeable.

• is more simple. Supports:• is very complicated. Supports:
– bitmap mask
– two compression schemes
– three interleaving types
– multiple dimensions
– embedded metadata (color table, 

statistics, etc…)
– lots of unimplemented features

• do not allow seamless analysis 
operations with vector geometries

• is more simple. Supports:
– masks through band
– only the deflate compression
– only one interleaving type
– only two dimensions
– leave metadata, color table and 

statistics to the application level

• allows seamless analysis operations 
with vector geometries

*Xing Lin’s PGRaster is almost identical to Oracle GeoRaster…



Implementation

PostGIS WKT
Raster

WKT Raster is installed as a 
side application to PostGIS…

Proj4 GEOS

Uses Uses

Raster

Uses



• ISO 19123 is the “Abstract Specification Schema for Coverage 
Geometry and Functions”

• No “implementation” standard have been produced yet
• Even though the “raster” type is more easily associated with the notion 

of “coverage”, a raster layer is NOT MORE a coverage than a vector 
layer. In the standard:

– some types of coverage can be vectorial. e.g.
• CV_DiscreteSurfaceCoverage (a vector layer of surfaces)

WKT Raster VS ISO 19123

• CV_DiscreteSurfaceCoverage (a vector layer of surfaces)
• CV_DiscretePointCoverage (a vector layer of points)

– some types of coverage can be matricial. e.g.
• CV_DiscreteGridPointCoverage (a raster layer representing a grid of discrete 

points)
• CV_ContinousQuadrilateralGridCoverage (a raster layer representing a 

continuous field)

• We think ISO 19123 should be implemented as a logical layer OVER a 
vectorial or a raster storage layer.

– every ISO 19123 function should have the name of a vector or a raster table as 
argument. e.g. evaluate(temp, point) where temp is the name of a table containing a 
geometry or a raster column



Summary
• rasters are multiband and multiresolution, georeferenced, and 

support variable extents (per row), nodata values and multiple pixel 
types.

• raster is implemented as a new WKT/WKB form
– WKT as RT_RasterFromText(‘RASTER(…)’)
– WKB as raw raster data, compressed with deflate 

• Functions involving only rasters generally return rasters.• Functions involving only rasters generally return rasters.
• Functions involving only geometries generally return geometries.
• Functions involving rasters and geometries have an option to 

specify the type of the output in case of ambiguity.
• Some raster-specific functions must be added but most functions 

become seamlessly usable with geometries or rasters.
• WKT Raster is much more simple to use than Oracle GeoRaster
• WKT raster is not an attempt to implement ISO 19123



Priorities and Planning

See the WKT Raster wiki page for planning and funding:

http://postgis.refractions.net/support/wiki/ind
ex.php?WKTRasterHomePage



Acknowledgements

• Steve Cumming (Steve.Cumming@sbf.ulaval.ca), Canada Research Chair in 
Boreal Ecosystems Modelling, for having initiated this project and financing 
it through a Canada Foundation for Innovation grant.

• Thierry Badard (http://geosoa.scg.ulaval.ca), Professor/full time researcher 
at Centre for Research in Geomatics, Université Laval, Quebec, Canada for 
his valuable comments, revisions, expertise and discussions.his valuable comments, revisions, expertise and discussions.



Funding and Future Opportunities
• Actual Funding - The Boreal Avian Modeling (BAM) project and the Canadian 

Foundation for Innovation (CFI) are financing development of a web-based GIS 
tool to automate buffer operations on large spatial datasets. The objective is to 
support ecological analysis by reducing the overhead of GIS expertise and data 
assembly. A half-time position (Pierre Racine) is supported to develop a system 
prototype including raster integration in PostGIS.

• Extended Funding - Steve Cumming and Thierry Badard aim at initiating 
a new project to complement the funding of the project (and hence enable a new project to complement the funding of the project (and hence enable 
the financial support of another developer) and explore new avenues for 
geospatial data analysis provided by such a raster support (e.g. raster 
based Spatial OLAP applications). 

• Interested? - If you are interested in such an implementation of the raster 
support in/with PostGIS and/or in participating to the new project, do not 
hesitate to contact Pierre Racine (Pierre.Racine@sbf.ulaval.ca), Steve 
Cumming (Steve.Cumming@sbf.ulaval.ca) and Thierry Badard 
(Thierry.Badard@scg.ulaval.ca).


