Introducing PostGIS WKT Raster

Seamless Raster/Vector Operations
in a Spatial Database

JQ: S\ FOSS4G 2010
- 2l 2] \/ Hab<
#ril{‘%?;# ¥ Barcelona

SEP 6th-9th

Boreal Avian

!
L%; Modelling Project

K
% The Canadian BEACONs Prolject
SO Boreal Ecosystems Analysis of Conservation Networks.

(ostgreSQT

Pierre Racine
Research Professional
Centre d’étude de la forét
Département des sciences
du bois et de la forét
Université Laval

Quebec, Canada

Canada Foundation for Innovation

CeE

Centre d'étude de la forét

@f el UNIVERSITE
. LAVAL

W Cadcorp’

deim s

155 PARAGON

CORPORATION

eedadzavea

MichiganTech

Espana
Virtual

Introducing PostGIS WKT Raster

Support for rasters in the PostGIS spatial database

new native base type
very much like easy to use as the GEOMETRY
type
One row = one raster
One table = one coverage
Integrated
SQL API easy to learn for usual PostGIS users
Full raster/vector analysis capacity. Seamless when possible.

Development Team
Current:

Past:
Fou nding ch\‘I?(F',I:[eRr;s:i;-n

The Context
The Canadian Spatial Data Foundry

- A web site for researchers in forestry, ecology and
environment

- Doing buffer analysis over HUGE raster and vector
datasets (covering the extent of Canada)

geom | obslID |[[cutProp|[meanTempj|elevation|| etc...

polygon 1 75.2 20.3 450.2
temperature [goygon| 2 26.3 155 467.3
polygon 3 56.8 17.5 564.8
polygon 4 69.2 10.4 390.2

elevation, etc...

Strategies for Implementing the
Base Buffering Process

We need code for...

A

Strategy
B

C

* vector storage &
manipulation

* raster storage &
manipulation

 analysis processes

database

outside
database

specific
homemade
application

database

database
(non-native
support)

specific
homemade
application

database

database
(native support)

database

Strategy C (implementing raster as a native type into
PostGIS) is a more elegant and generic solution

answering many more GIS problems

Raster in the Database Requirements
(actually WKT Raster features...)

Support for georeferenced, multi-band,
multi-resolution and tiled raster coverages

SQL operators and functions for raster
manipulation and analysis

SQL operators and functions
working seamlessly on raster and vector data

Easy import/export of rasters from/to the
filesystem

Registration (in the database) of metadata
for rasters staying outside the database

1) Georeferenced, Multiband,
Multiresolution and Tiled Coverages

Georeferenced ==
- georeferenced pixelsizex 3
- rotation S
Multiband
- band with different pixelsizey

pixeltypes

1BB, 8BSI, 8BUI, 16BSI, 16BUI, 32BSI, 32BUI, 32BF, 64BF “
- nodata values W

e.g. SRTM Coverage for Canada

Tiled s j%;??
rff: Y
B gé T
1 GB per tile, 32 TB per coverage (table) L T } QF%@ZW
Rasters are compressed (by PostgreSQL)

- non-rectangular
Multiresolution (or overviews) are stored in different tables

List of raster columns available in a raster _columns table similar to
the geometry_columns table

2) SQL Operators and Functions for
Raster Manipulation and Analysis

implemented, , planned
All indexing operators: <<, &<, <<|, &<|, &&, &>, >>, |&>, |>>, ~=, @, ~

Get and set raster properties: width(), height(), upperleft(),
setupperleft(), pixelsize(), setpixelsize(), skew(), setskew(), numbands(),

Get and set raster band properties: bandpixeltype(),
bandnodatavalue(), setbandnodatavalue(), bandhasnodatavalue(),
setbandhasnodatavalue(), bandpath(), setbandpath()

Get and set pixel values: value(), setvalue(),
getstats(), etc...

Creation: makeemptyraster(), addband(), addrastercolumn(), etc...
Transformation: resample(), etc...
Conversion: toimage(), tojpeg(), totiff(), tokml(), etc...

Simple Examples

SQL
ST _UpperlLeftX(rast), ST _UpperLeftY(rast)

PL/pgSQL

ST DeleteBand(rast raster, band int)
raster

numband int := ST _NumBands(rast)
newrast raster := ST _MakeEmptyRaster(rast)

FOR b IN 1..numband LOOP
IF b !=band THEN
newrast := ST_AddBand(newrast, rast, b, NULL);
END IF;
END LOOP;
RETURN newrast;

3) SQL Operators and Functions Working
Seamlessly on Raster and Vector

The time is past when we wanted to
work on raster data differently than on vector data!
We just want to work on COVERAGES!
(in whatever format they are: vector, raster, TIN, point cloud, etc...)

Seamless raster versions of existing geometry functions: srid(),
setsrid(), convexhull(), envelope(), area(), is valid(),
centroid(), transform(), rotate(), scale(), translate(), etc...

Easy raster to vector conversion functions: dumpaspolygons(),
polygon(), pixelaspolygon(), pixelaspolygons(), etc...

Easy vector to raster conversion functions:

interpolate(), etc...

Major vector-like analysis functions working with rasters:
intersection(), intersects(), within(), contains(), overlaps(), etc...

Major raster-like analysis functions working with vectors:
etc...

3 b) Lossless Conversion Between
Vector and Raster Coverages

- Categorical rasters layers convert \ c
well to vector layers =
. .
- one variable converts to one column 2
- groups together pixels of same value =
- contiguous or not landcover landcover
- continuous raster layers do not convert as well e
polygon 3
- Vector layers do not convert well to raster layers pengen T

- each attribute (e.g. type) must be
converted to one raster

- no support for nominal values (e.g. “M347)
- global values (area) lose their meaning

- overlaps are lost
.] landcover
- resolution must be high to match vector lgeometry] type |mapsheet] area
isi polygon | 4 M34 | 13.34| °
precision polygon| 3 M33 | 15.43 area
- features lose their unique identities sobpEnll v L Tes i

- reconversion to the original vector is very difficult or impossible

We need a better way to convert vector layers to rasters without destroying objects’ identities

3 b) Lossless Conversion Between
Vector and Raster Layers

In a vector layer, each object has its own identity

landcover
lgeometry| type |mapsheet| area
polygon 4 M34 13.34
polygon 3 M33 15.43
polygon 7 M33 10.56
polygon 9 M34 24.54
polygon 5 M33 23.43
polygon 2 M32 12.34

In a raster layer converted from a vector layer, each object should also
conserve its own identity

landcover Ef}f
raster | type |mapsheet| area -
raster 4 M34 13.34 - agnANaNE
raster 3 M33 15.43 i B B B
raster 7 M33 10.56 i
H raster 9 M34 24.54
raster 5 M33 23.43
raster 2 M32 12.34
its own georeference Rasters become just another way to store
nodata values geographic features in a more expressive
overlap vector object-oriented-like style

- Raster algorithms “blend”

ST Intersection

(implemented)

The goal is to be able to do overlay operation on coverages the same
way we are used to do them on vector coverage but without worrying if
data are stored in vector format or raster format.

observ cover result
| _geom raster [ctypd] | geom | obsid
polygon raster 4 polygon | 24
polygon raster 3 polygon | 53
polygon raster 5 polygon | 24
' raster 2 polygon | 23

ctype

area

10.34

11.23

14.23

v jo|e

9.45

SELECT obsid,(gv).geom, (gv).val, ST Area((gv).geom) as area FROM (
SELECT ST_Intersection(ST_Buffer(observ.geom, 1000), cover.rast 1) as gv,

obsid;etype
FROM observation, cover

WHERE ST Intersects(ST_Buffer(observation.geom, 1000), cover.rast)

) foo

- takes nodata value into account

- simplification
- tutorial

ST MapAlgebra
(being implemented)

- Generate a new raster, pixel by pixel, as a the result of an expression

involving one, two or more rasters
- One input and two input rasters versions

- Resulting extent can the same as be the first
raster, the second raster, the intersection or
the union of both

- Misaligned and different resolution rasters are
automatically resampled to first or second raster

- Absent values (or nodata values) are replaced with NULL

i : : -1,1
or a provided value (so we can refer to them in expressions) .11

[0,1]

[1,1]

- Resulting pixeltype can be specified

-1,0
- Will allow referring to surrounding or neighbor tile pixels 1.0

[0,0]

[1,0]

values for focal & zonal functions. i.e. 'rast2[-1, -1]°

- Expressions are evaluated by the PostgreSQL SQL 1]

[05'1]

[15'1]

engine so that users can use their own Pl/pgSQL functions

- Will also allow passing geometries and values in place of raster
for a seamless integration with vector data

ST MapAlgebra
(being implemented)

Example 1: Reclassifying pixel values (one raster version)

SELECT
41210 0| 2
FROM elevation 1|-4/2 => 0|0
2|0 |1 0|0

Example 2: Computing the mean + some personnal adjustment (two

rasters version)
SELECT

FROM elev1, elev2 WHERE

-10/ 0 | O

You can also intersect or merge
rasters, create raster aggregates, o
-1 |-4.

and many funny things!
2|01

4) Easy Import/Export of
Raster From/To the Filesystem

PostgreSQL export

PostGIS ~
(or dump)

coverage table

Import is done with gdal2wktraster.py
- shp2pgsql
- Batch import overviews tiling index
- many file formats

gdal2wktraster.py —r “c:/temp/mytiffolder/*.tif” -t mytable -s 4326 -k 50x50 -l >
c:\temp\mytif.sql
psql -f c:\temp\mytif.sql testdb

Export is done using the GDAL WKT Raster driver

5) Registration of Metadata for Rasters
Staying Outside the Database

Provide faster loading and export of files for desktop application
Provide faster access for web applications (JPEGS) Web Client
Avoid useless database backup of large

datasets not requiring edition L

Avoid importation (copy) of large

datasets into the database Web service

All functions should eventually works

seamlessly with out-db raster SQL JPEGS

Data read/write with GDAL (many formats mage01iog
Eventual possibility to convert out-db T Image02.jpg
raster to in-db raster and hence, to o Image03 jpg
load rasters in the DB using SQL T Image04.jpg

« CREATE TABLE outraster AS

SELECT ST_MakeRegisteredRaster('c:/temp/mytiff/*.tif')

-« CREATE TABLE inraster AS
SELECT ST_MakeBandInDB(rast, band) FROM outraster

A Complete Framework for Light

GIS Application Development

* GIS in the Database: A complete SQL geospatial API
working as seamlessly as possible on any type of coverage
- Vector, raster, TIN, point cloud, etc... Desktop or Web

- Keep the processes close to the data where the Applicaton
data should be: in a database

- DBMS client-server architecture good for

(query building
& display)

desktop and web applications, single and multi-users t table
- Why SQL? sQL | | vector,
- Most used, most easy and most minimalist though | raster

complete language to work with data in general
- Easily extensible (PL/pgSQL)

- More lightweight applications (geoprocessing)

- All the (geo)processing can be done in the database

- Desktop and web applications become
simple SQL query builders and data displayer

Spatial Database

Introducing
WKT Raster "Raster Objects”

Rasters created by converting geometries coverage
become raster becomes vector like "raster objects".

Like vector geometries, raster objects:

independent
localisation

overlap
change location independently
individual objects identity

Moreover, raster objects can be used to model real life
objects better represented as small fields (like fires or

fuzzy objects).
Very new type of GIS object

Raster Objects VS Other GIS Objects

Point and Line Coverages

Polygon Coverages
constant surface identity and

properties

Raster Object Coverages

Constant Raster Objects (categorical)

constant surface identity and properties

polygon, better

processed using existing raster algorithms

land use; land cover C shou
buffers, animal territories

Variable Raster Objects (field)

variable field identity and properties e
difficult to
model as polygons
fire, fuzzy objects (lakes, land cover, forest
stands, soil), area of influence, animal territories ‘
Traditional Raster Coverages
variable field I al

elevation, climate

[Comparison with Oracle GeoRaster

See Jorge Arevalo’s presentation, just following...

Summary

Lightweight applications (web or desktop) like the Canadian Spatial Data
Foundry needs server API to manipulate and analyse vector and raster
data. When possible, seamlessly. Ideally in SQL.

PostGIS WKT Raster aims to provide such an integration
multiband, multiresolution, tiled non-rectangular raster
coverages

Seamless operators & functions
Lossless conversion between raster & vector layers
ST_Intersection and ST_MapAlgebra and many others working seamlessly on raster and vector

Storage outside
Easy
A new approach to geospatial application development
All GIS processes can now be done in the database

Introduction of a new kind of GIS raster objects useful for:
categorical features
fuzzy objects identities

Thanks!

http://trac.osgeo.org/postgis/wiki/WKTRaster

. Boreal Avian
Lé: Modelling Project

PostgreSCL | \& Cadcorp’

i
\%ﬁ(& The Canadian BEACONs Project
Boreal Ecosystems Analysis of Conservation Networks.

deim s

western linitiative de
boreal 4 conservation
conservation boréale
initiative = de l'ouest

Fondation canadienne pour I'innovation
Canada Foundation for Innovation

SGIS | < PARAGON

Con

wﬁ"%u#

SO\ FOSS4G 2010
¥ Barcelona

SEP 61|1_9tl1

.‘:\ azavea

L MichiganTech

2

cel

UNIVERSITE

& LAVAL

Centre d'étude de la forét

~_g@Espana
Virtual

