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a b s t r a c t 

Extensive and aging forest road systems, especially those that include poorly maintained stream crossings, can be 
significant sources of fine sediment that are detrimental to aquatic ecosystems. With limited resources available 
for culvert maintenance, alternative low-water crossings such as fords have been designed. Although crushed- 
stone fords have been used to minimize particle release during stream crossing, few studies have measured 
the fine sediment input that results from their construction. We used continuous turbidity monitoring paired 
with grab samples to obtain suspended sediment input from four construction sites with different streamflows, 
streambed gradients and bed and bank soil textures. Construction took place in the fall of 2018 and the summer 
of 2019. The results indicate that the suspended sediment load induced by the construction ranged between 72 
and 831 kg. Sediment load appeared mainly sensitive to the fine particle content in the streambed and banks. 
We also observed that suspended sediment concentrations returned to background levels at every site within 2 h 
after construction. Compared with the failure of unmaintained culverts in which most road fill is washed into the 
stream, crushed-stone fords construction represent negligible sediment input. Our results suggest that improved 
fords could be an environmentally beneficial alternative to culverts on seldom-used roads where access is still 
required but resources for culvert maintenance are lacking. 
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. Introduction 

Due to limited resources, a large proportion of roads are aban-
oned after periods of high-intensity use for activities such as harvest-
ng, mining and the construction of energy transmission infrastructure
 Thompson, 2009 ). In the United States, most of the 610 000 km of
lassified Forest Service roads on National Forest lands were built for
imber harvesting and are now being used for other purposes. However,
ess than 20% are maintained according to regulations ( USDA Forest Ser-
ice, 2002 ). In Quebec, Canada, there are approximately 400 000 km
f roads in public forests with an estimated average of 1.2 stream cross-
ngs per kilometer, mainly culverts ( Morvan and Trottier, 2011 ; Paradis-
acombe and Jutras, 2016 ). Only 20% of forest access roads are properly
aintained following high-intensity use ( Paradis-Lacombe, 2018 ). 

Without proper maintenance, culverts can fail due to blockage or
eterioration ( Elliot et al., 1996 ). In a study conducted over 400 km of
oads within 13 small watersheds in the province of Quebec, Paradis-
acombe, 2018 ) found that 54% of stream crossings (mostly culverts)
ere in mediocre condition or worse. Poorly maintained culverts can
ecome significant barriers to fish passage ( Paradis-Lacombe, 2018 ;
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érubé et al., 2010 ; Roni and Quimby, 2005 ; Trottier and Char-
ette, 2011 ). Culvert failure can also lead to road-fill failure, which can
dd up to thousands of m 

3 of sediment into streams ( Elliot et al., 1996 ).
ing (2017 ) estimated that the volume eroded after the failure of a cul-
ert varied between 10 and 156 m 

3 . Best et al. (1995 ) reported an aver-
ge eroded volume of 253 m 

3 following culvert failure without channel
iversion, while the average eroded volume for culvert failure causing
hannel diversion was 2650 m 

3 . Similarly, the volumes eroded measured
y Weaver and Hagans (2000 ) ranged between 5 and 2300 m 

3 . Massive
nputs of sediment, especially fine sediment, is known to be harmful to
quatic wildlife. The silting of spawning beds and the shift in macroin-
ertebrates are some of the well-documented impacts of fine sediment
nput on species such as brook trout (Salvelinus fontinalis) and Atlantic
almon (Salmo salar) ( Brown, 1994 ; Kidd et al., 2014 ; Lilijaniemi et al.,
002 ). In the same way, the silting of stream beds can impact other
quatic vertebrates such as salamanders ( Bérubé et al., 2010 ). 

Many regulations, best management practices (BMPs) and wa-
er quality standards are developed to address sediment input in
treams. Water quality standards are established based on scientific
ata, professional judgement ( Ministry of the Environment and the Fight
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Fig. 1. Location of study sites. 
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gainst Climate Change, 2019 ), water use and water value for public
ater supplies ( U.S. Environmental Protection Agency, 2006 ). There-

ore, standards vary between jurisdictions. For example, the criteria es-
ablished for the province of Quebec for clear freshwater aquatic habi-
ats require that the suspended sediment concentration (SSC) does not
xceed the background level by more than 25 mg/L for short time peri-
ds ( < 24 h) or 5 mg/L for longer periods (24 h to 30 days) ( Ministry of
he Environment and the Fight against Climate Change, 2002 ). 

To reduce damage to aquatic ecosystems, managers may choose to
emove all stream crossing structures following the intensive use of re-
ource roads. However, most sections of these roads are left intact in
rder to maintain access for future forest management and infrastruc-
ure maintenance. Quebec’s regulation on forest road closure requires
hat all stream crossings be removed, the stream bed and banks be sta-
ilized, and that 20 m of roads be vegetated on both side of the crossing.
n addition, a minimum of 250 m has to be vegetated from the starting
oint of closure along the road network ( Government of Quebec, 2020 ).
s observed by Gauthier et al. (2013 ), various users still use the re-
aining road sections and cross the streams at unplanned locations. Soft

round crossings without proper stabilization release sediments during
treambed and bank perturbations ( Chin et al., 2004; Gauthier et al.,
013 ). This erosion and overall deterioration of the crossing site leads
o the creation of convoluted routes through adjacent areas by the pas-
age of the user’s vehicles through less disturbed pathways ( Aust et al.,
005 ; Sample et al., 1998 ). In fact, in their field surveys, Hydro-Québec
ound that fording sites frequently used by other users (20% of surveyed
ites) remained notable sources of sediments. To address this type of
roblems in USA, various low-water crossings and ford types have been
esigned and tested( Clarkin et al., 2006; Lohnes et al., 2001; Bhattarai
t al., 2016 ). Although fording natural streams is permitted under spe-
ific conditions in most Canadian provinces (Department of Environ-
ent, 2012, Fisheries and Oceans Canada and Ministry of, 2017; Gov-

rnment of Newfoundland and Labrador, 2018; Hydro, 2014; Manitoba
atural Resources 1996) , Quebec regulations do not currently permit

his practice. In order to address the issue of under-maintained roads,
egulations for medium- and long-term road maintenance or alternatives
uch as fording must be developed. 

Crushed-stone fords were selected for this study because they are
imple and economical to construct, and require minimal maintenance
ompared to culverts and bridges ( Clarkin et al., 2006; Lohnes et al.,
001 ). They also represent little environmental risk because there is
o road fill to washout and because plugging by debris is unlikely.
arren and Pardew (1998 ) also found that fords showed little difference

rom natural reaches in overall movement of fishes. Although numerous
tudies have evaluated the effects of stream crossing structures such as
ords on water quality in the United States ( Warren and Pardew, 1998 ;
ust et al., 2011 ; Holmquist et al., 2015 ), there is a paucity of scientific
ata on sediment inputs generated during crushed-stone ford construc-
ion, particularly within the Canadian Shield. 

The objective of this study was to measure the suspended sediment
nput generated by the construction of crushed-stone fords and to iden-
ify the relative importance of key phases of construction to the total
ediment load. A second objective was to compare regulatory suspended
ediment concentration (SSC) guidelines to the observations made dur-
ng construction. 

. Material and methods 

.1. Study sites and ford construction 

The four study sites were located within right-of-ways of Hydro-
uébec energy transmission lines in Quebec, Canada ( Fig. 1 ). The

ites represented a range of initial conditions as well as varying flows,
treambed gradients and soil textures ( Table 1 ). The succession of ford
onstruction phases are linked to the initial conditions at each site. To
2 
void repetition, a detailed description of these conditions at each site
s reported in the results section. 

Constructions took place during the fall of 2018 and the summer of
019 during low flows and rainless days. Crushed-stone fords were con-
tructed in straight sections of the streams by excavating the roadway
rea (4 m width) of the streambed 20 to 30 cm deep and then back-
lling the excavation with 100 to 200 mm crushed stone. The natural
radient of each stream was maintained. At the end of construction, the
treambed was 5 to 10 cm below the previous level to ensure water and
sh passage during low-flow periods and to support the reestablishment
f a natural streambed. Larger rocks found on-site were placed down-
tream to keep the crushed stone in place during periods of high flow.
he banks were shaped to obtain a maximum slope of 20% as illustrated
y the ford at the Lac Perdu site ( Fig. 2 ). The first 5 m on each side of
he stream were stabilized using 100- to 200 mm crushed stone with-
ut a geotextile membrane. The 15 m stretch beyond those first 5 m
ere stabilized using 50- to 100 mm crushed stone placed on top of a
eotextile membrane. Water bars were also built at the ends of these
tabilized roadbeds to divert water to undisturbed forest floor accord-
ng to the provincial regulations for road embankments ( Government of
uebec, 2020 ). At every site, all of the bare soil was covered with straw
nd grass seed at the end of construction. 

A locally available excavator was used at each site so the makes and
odels differed between them (all were 10–90 mt). Bucket capacity

anged from 0.5 to 1.6 m 

3 . In Pessamit, the excavator was equipped
ith a thumb and a dozer blade. Construction was carried out during

ow-flow periods without flow diversion, allowing the excavator to be
n contact with live water at each site. 

.2. Field measurements 

The methods presented here are adapted from Lewis and Eads (2001 )
nd Steffy and Shank (2018 ). Streamflow was estimated by multiplying
he cross-sectional area of the stream determined using a high precision
ltimeter (Zip level pro-2000, ± 0.5 cm, Technidea Corporation, Escon-
ido, USA) by water velocity measured with a velocity flow meter (Hach
H950, ± 0.015 m/s, Hach, Loveland, USA). Because the maximum wa-
er depth ranged from 20 to 50 cm, the velocity was only measured in
he thalweg at 40% of the water depth relative to the bed. Hence, the
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Table 1 

Physical characteristics of the four study sites. 

Site 
Drainage area 
(ha) 

Streambed 
width (m) 

Streambed 
gradient a (%) Particles < 2 mm 

b (%) Q 10 
d (m 

3 /s) 
Coordinates 
(DD) 

Bed Banks 

Longue-Rive 483.7 3 0.4 99 99 4.24 48.513901°
− 69.308137°

Pessamit 216.3 2 3.4 21 58 1.51 49.075611°
− 68.628513°

La Tuque 113.7 3 4.0 - c 64 1.64 47.405237°
− 73.447487°

Lac Perdu 117.0 3 3.7 < 10 51 4.07 47.211270°
− 70.91918 °

a Streambed gradient was measured over a distance of 30 m upstream and downstream of the crossing site. 
b Bed and bank compositions were determined by pebble count ( Wolman, 1954 ) and sieving of soil samples, respectively. 
c We were unable to characterize the natural bed composition at this site because a culvert was in place at the beginning of construction. 
d The 10-year recurrence discharge was calculated using the rational method ( Ministry of Forests, Wildlife and Parks, 2021 ). 

Fig. 2. Before (4 July 2019) and after photos (18 July 2019) of the Lac Perdu site. 
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verage velocity and therefore the streamflow and sediment loads were
verestimated. Streamflow measurements nearby the Pessamit site in a
 shape stream indicated a 23% overestimation of the flow when using

he velocity at a single point in the thalweg (unpublished data). This
alue is similar to the 18% overestimation calculated from a U shape
tream data in Table 6.3 of Viessman and Lewis (1996 ). The estimated
treamflow from the velocity measurement at the thalweg was not cor-
ected since the overestimation was not evaluated at any study reach.
ive velocity readings were recorded at the beginning and end of each
onstruction day. We used a water level sensor (KPSI 710, ± 0.5%; Mea-
urement Specialities Inc., Hampton, USA) connected to a data logger
H21-USB, Onset, Bourne, USA) to continuously record the water level
n order to take new velocity measurements for any change in level of
.5 cm. 

At each site, low-range (0–1000 NTU) nephelometric turbidime-
ers (Analite, NEP9510GPI, ± 1%, McVan Instruments, Mulgrave, Aus-
ralia and WQ730, ± 1%, Global Water, College Station, USA) were
sed to monitor upstream and downstream turbidity. A high-range (0–
000 NTU) nephelometric turbidimeter (Analite NEP9510GPI, ± 1%,
cVan Instruments, Mulgrave, Australia) was also installed alongside

he low-range sensor downstream from the ford. Turbidity sensors were
ounted on metal rods that were inserted in the streambed. The up-

tream rods were installed in the nearest pool above the ford (5–15 m
bove ford depending on the site). The downstream rods were installed
elow a zone of turbulence to ensure adequate mixing of water and
ediments. The downstream sensors were located 20 m, 7 m, 13 m, and
2 m below the ford for Longue-Rive, Pessamit, La Tuque and Lac Perdu,
espectively. The sensors were fixed at 40% of the total water depth rel-
tive to the bed. We used a H21-USB data logger to record the mean of
ve turbidity readings for each 5 s period. 
e  

3 
In order to transform turbidity values in concentration of suspended
ediments, 500 mL water samples were collected using an autosampler
ISCO-6712, ± 5 mL, Teledyne ISCO, Lincoln, USA) at 20 min inter-
als throughout the construction period. Manual samples were also col-
ected, mainly during visible plumes of particles, in order to capture
he maximum concentrations. Although we acknowledge that it is pos-
ible to have underestimated the maximum, our results still provide an
dequate means of comparison with other stream crossing structures
y providing an order of magnitude of the suspended sediment being
enerated. At each site, both automatic and manual samples were col-
ected at approximately 15 cm downstream from and at the same depth
s the turbidity sensors. Water was sampled using pre-acidified bottles
nd stored at 4 °C until processed. Samples were later vacuum-filtered
hrough 0.7 μm filters, oven-dried and weighed (0.0001 g) to measure
uspended sediment concentration. During construction, detailed field
otes and videos with timestamps were taken to precisely document
very construction phase and help keep track of noticeable changes in
urbidity. 

.3. Analysis 

All turbidity data were carefully inspected to omit erroneous or un-
ertain values. Images captured during construction were a great tool
o validate suspected fouling or malfunctioning of sensors when water
amples were unavailable for specific periods. The mean values from the
 s intervals were used to compute a median turbidity for every 30 s time
eriod to reduce the influence of outlier values ( Lewis and Eads, 2001 ).
hen the 30 s turbidity exceeded the calibrated range of the high-range

ensor, a value of 5000.01 NTU was substituted. 
Previous studies have showed that turbidity-SSC regression mod-

ls are site specific ( Lewis and Eads, 2001 ; Grayson et al., 1996 ;
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Fig. 3. Linear regressions between turbidity and suspended sediment concentration (SSC) for each sensor on each site. Regression equations are presented in 
Table 2 . 

Table 2 

Regression equations parameters for low-range (top) and high-range (bottom) turbidity sensors and range of SSC measured in water samples. 

Site Sensors n Intercept ± SE Slope ± SE R 2 adj Peak turbidity (NTU) Min. SSC (mg/L) Max. SSC (mg/L) 

Longue-Rive NEP9510GPI 23 0.64 ± 0.46 0.97 ± 0.11 0.79 1915 5 3955 
NEP9510GPI 34 − 0.17 ± 0.04 1.13 ± 0.09 0.81 

Pessamit WQ730 21 1.61 ± 0.60 0.66 ± 0.15 0.48 2870 3 4402 
NEP9510GPI 24 − 1.51 ± 0.55 1.27 ± 0.10 0.87 

La Tuque NEP9510GPI 62 0.70 ± 0.29 1.07 ± 0.09 0.72 > 5000 1 9394 
NEP9510GPI 71 2.31 ± 0.28 0.79 ± 0.05 0.86 

Lac Perdu NEP9510GPI 34 1.07 ± 0.22 0.87 ± 0.05 0.90 > 5000 9 1545 
NEP9510GPI 39 0.79 ± 0.28 0.85 ± 0.06 0.86 
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asmussen et al., 2009 ) and that turbidity readings vary considerably
etween sensors, but can still lead to reliable turbidity-SSC ratings
 Rymszewicz et al., 2017 ). Therefore, for each sensor at each site, a lin-
ar regression of SSC values (obtained from both automatic and manual
ater samples) against median turbidity for the corresponding 30 s in-

erval was produced ( Fig. 3 , Table 2 ). A natural log (ln) transformation
f both variables was used to ensure that the regression assumptions
f normality and homoscedasticity were met. The “predict ” function in
 was used to estimate SSC and the upper and lower 95% confidence

ntervals using site-specific model outputs ( Steffy and Shank, 2018 ;
rayson et al., 1996 ; Core Team ). Because the range of turbidity from

he upstream (background) samples were deemed insufficient to build
n adequate regression, the regression from the downstream low-range
ensor at the site was used. 

A total of 174 paired samples of turbidity and SSC were collected
ownstream. Measured SSC ranged from 1 to 9394 mg/L ( Table 2 ).
ll site-specific turbidity vs. SSC regression models were statistically
ignificant ( p value < 0.001). The coefficients of determination (R 

2 
adj )
4 
anging from 0.48 to 0.90 largely differed between sites as observed by
teffy and Shank (2018 ) and Arismendi et al. (2017 ) ( Fig. 3 , Table 2 ). 

The regressions were used to produce a continuous record of SSC
ased on every 30 s turbidity measurement. We used the high-range
ensor readings to complete datasets when turbidity exceeded the cali-
rated range of the low-range sensor or when the low-range sensor read-
ngs were unavailable. Because of the poor model fit with the low-range
ensor at the Pessamit site, which can be attributed to the sensor em-
loyed, we used the high range sensor to estimate SSC. The low-range
ensor was only used to complete datasets when the high-range sensor
eadings were unavailable. The peak SSCs that were estimated with the
egression were 4335 mg/L (11:00) in Longue-Rive, 5268 mg/L (10:38)
n Pessamit, 8164 mgL − 1 in La Tuque and 3199 mg/L in Lac Perdu.

e then estimated the total load for the construction by summing the
roduct of discharge and predicted SSC at 30 s intervals. 

Finally, we documented the relative contribution of targeted key
hases of construction, such as bank shaping, bed excavation, bed and
ank stabilization, and excavator crossings. We also included other spe-
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Table 3 

Duration, suspended sediment (SS) load and mean suspended sediment concentration (SSC) induced by targeted construction 
phases. Letters in the first column refer to the letters in Fig. 4 . 

Phase Duration (min) SS load a (kg) Mean SSC a (mg/L) 

Longue-Rive (Streamflow = 0.260 m 

3 /s; Thalweg water depth = 0.50 m) 
Background 300 23.4 5 

A Installation and removal of cofferdams 61.5 115.9 121 
B Bed excavation 12 109.1 583 
C Excavator crossing 8 124.9 1001 
D Excavator crossing 9.5 124.8 842 
E Bed stabilization 18 156.0 555 
F, G Access bank stabilization 14.5 82.6 365 

Total 300 830.6 177 
Pessamit (Streamflow = 0.114 m 

3 /s; Thalweg water depth = 0.52 m) 
Background 480 6.4 2 

A Access bank stabilization 35 10.4 43 
B Bed excavation and stabilization 34 16.8 72 
C Removal of culvert 8 20.7 378 
D Removal of beaver dam 22 84.2 559 
E Excavator crossing and filling of the diversion channel 10 29.5 432 
F Excavator crossing 6 5.9 145 
G, H Opposite bank stabilization 33.5 10.8 95 
I Excavator crossing 10.5 7.2 100 
J Opposite bank stabilization 19 7.1 55 
K Excavator crossing 15 6.5 63 

Total 480 228.5 70 
La Tuque (Streamflow = 0.018 m 

3 /s to 0.013 m 

3 /s b ; Thalweg water depth = 0.27 m to 0.24 m 

b ) 
Background 1140 5.9 5 

A Removal of downstream rock wall above the culvert 11.5 7.9 634 
B Silt fence installation 26.5 13.5 471 
C Removal of upstream rock wall above the culvert 21 2.4 106 
D Culvert removal 67 116.4 1609 
E Opposite bank stabilization 21 14.7 649 
F Temporary bridge removal 17 22.0 1196 
G Bed excavation 19 69.0 3365 
H, I Bed stabilization 42 118.3 2607 
J Silt fence removal 73 42.9 754 

Total 1140 450.3 395 
Lac Perdu (Streamflow = 0.014 m 

3 /s; Thalweg water depth = 0.22 m) 
Background 420 2.4 7 

A Excavator crossing 8 0.9 137 
B Excavator crossing 6 0.4 89 
C, D Bed excavation 58 12.4 261 
E Excavator crossing 8.5 1.3 184 
F Opposite bank stabilization ( + 26 crossings) 45.5 33.2 887 
G, H Bed stabilization 38.5 20.4 645 

Total 420 71.8 208 

a Suspended sediment loads and SSC are the ones measured downstream and thus, include upstream contributio. 
b Streamflow and water depth at the thalweg for the third day of construction. 
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ific activities (e.g. culvert removal) when the sediment input was sig-
ificant. The beginning and end of a phase was defined as the moment
hen the downstream SSC surpassed the background level or when the
inimum SSC value was reached between two phases. All analyses were

onducted in Core Team . 

. Results 

.1. Sediment input from key phases of construction 

For every rainless construction period, the water level and, there-
ore the streamflow, remained constant and are presented in Table 3 .
he concentrations of suspended sediment obtained from the continu-
us turbidity measurements at the four sites are illustrated in Fig. 4 .
he construction phases are indicated by capital letters in Fig. 4 and
re defined in Table 3 . The initial conditions varied between sites, and
herefore the construction phases were adjusted accordingly. 

The Longue-Rive site was the only site that did not have proper road
nfrastructure leading to the stream crossing. Fording by locals and veg-
tation management teams using all-terrain vehicles and without any
tabilization measures caused major stream bed and bank erosion. At
he beginning of construction, there was an attempt at drying the site
5 
phase A) using cofferdams and pumps. However, the pumps were in-
ufficient to control the seepage. Cofferdams and pumps were removed
phase A) before bed excavation (phase B). The operator moved the ex-
avator across the stream twice during construction (during phases C
nd D). This occurred before bed stabilization (phase E) and was neces-
ary to properly shape the opposite bank. Only the first 5 m of the op-
osite bank were stabilized using crushed stone (phase G). There were
o crossings over the stabilized bed. 

At the Pessamit site, an old beaver dam and several broken culverts
ere present, suggesting that culvert failure may have occurred more

han once, causing substantial road-fill erosion and a stream channel di-
ersion. First, the operator shaped the access bank (phase A). The orig-
nal streambed was then excavated and stabilized using crushed stone
phase B). The plugged culvert (phase C) was removed in nearly dry
onditions because the water was still flowing through the diversion
hannel. The beaver dam (phase D) located upstream of the ford was
hen removed and the stream regained its original streambed position.
he operator moved the excavator across the stream on the stabilized
ed and filled the diversion channel near the opposite bank while the
xcavator tracks were still in contact with water (phase E). To shape and
tabilize the opposite bank (phases G, H, J), the operator made three
ore crossings on the stabilized streambed (phases I, F, K). 
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Fig. 4. Downstream suspended sediment concentration (SSC) during construction using the low-range (solid line) and high-range (dashed line) turbidity sensors. 
First and last excavator contact with water are represented by vertical dashed lines. Letters on the graph refer to construction phases presented in Table 3 . 
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The La Tuque site was part of a road closure project and a culvert
1.4 m X 12 m corrugated steel pipe) was in place before this study. On
he first day of construction, the operator removed the road-fill mate-
ial and the stones that retained the road fill downstream of the culvert
phase A). Then a geotextile silt fence was installed downstream of the
rossing (phase B). The silt fence was installed upstream of the turbid-
ty sensors. On the second day of construction, the stones that were
etaining the road fill upstream of the culvert (phase C) and the cul-
ert itself (phase D) were removed. A temporary bridge was set across
he stream (at 8:50:00) to serve as a crossing structure for the excava-
or during the stabilization of the opposite bank (phase E). The bridge
as then removed (phase F) to allow streambed excavation (phase G)
nd stabilization (phase H). The access bank was stabilized with no at-
ributable sediment input. The upstream and downstream areas of the
anks left bare by the removal of the culvert were stabilized using large
ocks and vegetation strips found on site (phase I). Finally, on the third
ay of construction, the silt fence was removed (phase J). However,
ue to poor design, the geotextile laid upstream was too short to re-
ove the accumulated silt, and sediment was released into the stream.
he turbidity exceeded the upper limit (5000 NTU) of the sensor dur-

ng 9 min ([8:33:00–8:35:00], [8:40:30–8:43:30], [13:59:30–14:01:30],
nd [14:26:00–14:28:00]) throughout the second day of construction
 Fig. 4 ). 

Finally, the Lac Perdu site was located on a closed road where a
emporary bridge had been removed before ford construction ( Fig. 2 ).
onstruction took place during a low-flow period but no additional miti-
ation methods were used. Bed excavation and four excavator crossings
ere carried out (phases A to E) before crushed stone was placed in

he streambed under the excavator tracks to limit rutting. The crossings
ccurred while the compacted road surface was still undisturbed. The
anks were then shaped and the opposite bank was stabilized (phase F)
efore completing the stabilization of the bed (phases G and H). The up-
d  

6 
er limit of the turbidity sensor was exceeded for a duration of 1.5 min
11:58:00–11:59:30] ( Fig. 4 ). 

.2. Total sediment loads 

The estimated cumulative suspended sediment load for the construc-
ion period was 831 kg for Longue-Rive , 228 kg for Pessamit, 450 kg
or La Tuque and 72 kg for Lac Perdu ( Table 4 ). Averaged over the to-
al construction duration, this represents maximum downstream SSCs of
77 mg/L, 70 mg/L, 395 mg/L and 208 mg/L, respectively. The aver-
ge background SSC calculated over the same period at each site varied
etween 2 and 7 mg/L ( Table 3 ). 

.3. Compliance with regulatory SSC guidelines 

Construction lasted 5 h in Longue-Rive, 8 h over 2 days in Pessamit,
9 h over 3 days in La Tuque, and 7 h in Lac Perdu ( Table 4 ). Down-
tream SSC exceeded the regulatory limit of 25 mg/L above the back-
round for less than 5 h at every site except the La Tuque one, where
he limit was exceeded during 10.8 h ( Table 5 ). The SSC returned to
egulatory compliance levels within 1 h after the last time the excava-
or made contact with water except for the last day of construction at
he La Tuque site. It took 2 h after the removal of the silt fence (Phase
, Fig. 4 ) for SSC values to return to compliance levels ( Table 5 ). 

. Discussion 

.1. Sediment input from key phases of construction 

.1.1. Major contributors 

Most of the sediments were generated by key phases of construction
uring a relatively short period. More than 80% of the sediment load was
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Table 4 

Duration of construction days, suspended sediment (SS) loads and associated confidence intervals for each site. 

Site Construction date/s Start time End time SS load estimate (kg) SS load estimate 95% interval (kg) 

Longue-Rive 18 Oct 18 9:00 14:00 830 507 – 1390 
Pessamit 22 Oct 18 8:00 14:00 228 145 – 367 

23 Oct 18 12:00 14:00 
La Tuque 26 June 19 10:00 16:00 450 293 – 687 

27 June 19 8:00 16:00 
2 July 19 8:00 13:00 

Lac Perdu 18 July 19 8:00 15:00 72 52 – 101 

Table 5 

Time exceeding regulatory limit of 25 mg/L higher than background for suspended sediment concentration (SSC) and time required to get back to 
regulatory levels after last excavator contact with water. 

Site Time exceeding regulatory limit (h) Time required to reach SSC regulatory limit (h) 

Day 1 Day 2 Day 3 

Longue-Rive 2.8–4.1 0.4 – –
Pessamit 3.0–4.8 0.3 0.5 –
La Tuque 8.2–10.8 0.2 1.0 2.1 
Lac Perdu 3.4–4.0 0.4 – –
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enerated in less than 40% of the total construction time at every site
 Table 3 ). The construction phase that represented the largest sediment
nput was bed stabilization in Longue-Rive (19% of total), beaver dam
emoval in Pessamit (37% of total), fill and culvert removal in La Tuque
28% of total), and opposite bank stabilization in Lac Perdu (46% of
otal) ( Table 3 ). As expected, the major sediment inputs originated from
he shuffling of streambed material. At every study site, more than 30%
f the sediment input was caused by bed excavation and stabilization
xcept for the Pessamit site (7%) where this phase was carried out in dry
onditions outside the natural diversion channel. Streambed material
huffling is inevitable during the construction of most stream-crossing
tructures, except maybe for some types of bridges, but sediment input
s minimized when working in low flow or dry conditions. 

.1.2. Culvert removal 

The load input from culvert removal in dry conditions in Pessamit
as only 20.7 kg whereas culvert removal in wet conditions produced

he highest load in La Tuque with 126.7 kg. The effect of culvert re-
oval is highly variable, as indicated by Foltz et al. (2008 ), who found

hat sediment loads generated by the removal of three culverts with
ow diversion ranged from 0.2 to 3.1 kg, whereas the removal of eight
ulverts without mitigation measures generated sediment loads that
anged from 2.6 to 170 kg. This emphasizes the importance of working
n low flow conditions, as recommended in most BMPs ( Lohnes et al.,
001 ; Hydro, 2014 ; Department of Environment, 2012 ; Fisheries and
ceans Canada and Ministry of, 2017 ; Government of Newfoundland
nd Labrador, 2018 ). 

.1.3. Excavator crossings 

We do not have a comparison of sediment loads between crossings
efore and after bed stabilization at the same site. However, excavator
rossings before streambed stabilization produced a very small sediment
oad in Lac Perdu ( < 1 kg) whereas the load was very high in Longue-
ive (125 kg). As presented in Table 1 , the bed and bank of the latter
ere composed of much finer particles. This is consistent with the re-

ults obtained by Sample et al. (1998 ) who found that the sedimenta-
ion produced by a four-wheel-drive vehicle crossing at a natural ford
as nearly 15 times greater than the sedimentation produced at a ford

hat had been improved using crushed stone. However, the much higher
treamflow at Longue-Rive has probably contributed to the larger load
ue to excavator crossings at this site. 

The number of excavator crossings needed for the excavation of the
pposite bank can have a significant impact on the relative contribu-
ion of this phase to the total sediment input. In Longue-Rive, the ATV
7 
rail on the opposite bank was already well stabilized by the vegeta-
ion present at the site and only the first 5 m needed to be accessed.
herefore, the stabilization of the opposite bank could be achieved by
he excavator arm reaching across the stream and did not require cross-
ng. It was done with no attributable sediment input. In Pessamit, the
tabilization of the opposite bank required 4 excavator crossings on a
tabilized bed and produced 8% of the total sediment input. The exca-
ator mainly circulated on stabilized banks. In La Tuque, the stabiliza-
ion of the opposite bank was done using a temporary bridge laid across
he stream. It required 6 crossings and produced 8% of the total sed-
ment input. Meanwhile, in Lac Perdu, the opposite bank stabilization
as done with 26 excavator crossings and produced 46% of the total

oad. The majority of the sediment originated from bank material being
ashed from the tracks of the excavator. Excavator operators in Longue-
ive and Pessamit chose to move the crushed stone closer to the stream

o limit the number of excavator crossings required to shape and stabi-
ize the opposite bank, while the operator in Lac Perdu chose to travel
ack and forth across the stream for each new bucket of crushed stone.
f he had used the same method as the operators in the previous sites,
he relative contribution of this phase to the total sediment input would
robably have been a lot less in Lac Perdu. Thus, it is recommended
hat the number of excavator crossings during construction be limited.
uring a road closure, the stream crossing and the road that is in place

hould be used to deliver crushed stone to each side of the stream, or
lose enough to the opposite side so that the excavator arm can reach
cross the stream to place them. This can also significantly reduce the
onstruction time (Ferland et al., unpublished data). 

.2. Sediment input from construction 

The sediment load generated by the construction of the four crushed-
tone fords ranged from 72 to 831 kg. Overall, construction at fine-
extured sites produced higher sediment loads, as indicated by the
ongue-Rive site producing a load 10 times greater than the one at
he Lac Perdu site. Furthermore, over the years, without stabilization
sing crushed stone, fine-textured sites are more likely to yield signifi-
ant amount of sediment from vehicle crossings and bank erosion dur-
ng snowmelt and rainfall than coarser-textured sites. A study done in a
ilitary training area of New Brunswick, Canada estimated that eroded
nimproved approaches produced 330 kg/km 

2 /year. The same study es-
imated that the improvement of ford approaches reduces erosion rates
y 98% ( Burdett et al., 2014 ). Hence, managed fords appear to be a
ood way to protect streams on aging forest roads. The average and peak
treamflows also influence sediment input. It may exacerbate or reduce
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G  
he sediment input differences between sites, as Foltz et al. (2008 ) ob-
erved a positive correlation between stream flow and sediment input. 

In comparison, culvert plugging and failure can represent up to
housands of tons of sediment input into streams (see 1.Introduction)
 Elliot et al., 1996 ; Best et al., 1995 ; Weaver and Hagans, 2000 ). Com-
ared to the greatest volume of sediment generated by a ford construc-
ion in this study, the volumes of sediment eroded from culvert failure
ited in other studies are 10 to 4800 times greater ( Best et al., 1995 ;
eaver and Hagans, 2000 ). More concretely, at the Pessamit site, we
easured the void left in the road caused by the culvert failure and

ound that the amount of material lost represented 350 tons. Based on
he 58% fine sediment content of the remaining road fill, this represents
n input of 203 tons of fine sediments, which is 890 times more than
he suspended sediment generated by the construction of the ford at that
ite. Given that many broken culverts were found, it is also possible that
his site experienced more than one washout. 

.3. Compliance with regulatory SSC guidelines 

Lastly, our results show that the regulatory suspended sediment con-
entration limit is exceeded during the construction of crushed-stone
ords. However, these perturbations are short-lived as SSC values return
o regulatory compliance quickly after the end of construction. 

At the La Tuque site, the silt fence did not reduce the load from ford
onstruction because its removal released the accumulated sediments
nto the stream, and therefore delayed the return to the regulatory com-
liance level. In contrast, Foltz et al. (2008 ) showed that two straw bales
laced in the stream caused a significant reduction in SSC and total sed-
ment load but still failed to maintain SSCs lower than 25 mg/L at a
ocation 100 m downstream from the construction site. 

. Conclusions 

Crushed-stone ford construction has produced relatively small sed-
ment loads and minor short-term perturbations to water quality. Sed-
ment input can be further reduced by assuring that the stabilization
f the access bank and streambed occurs before crossing the stream
o shape and stabilize the opposite bank. With forest road systems ag-
ng worldwide, our results confirm that crushed-stone fords could be
n environmentally beneficial alternative to road abandonment which
an lead to culvert plugging and failure. In addition to these poten-
ial washouts, uncontrolled crossings can add significant sediment loads
rom years of vehicle crossings and bank erosion from rain events.
rushed-stone fords are suited for roads where minimal access is re-
uired and resources for maintenance are lacking. These roads may in-
lude those used for forest harvesting, silviculture, mining, power line
nd pipeline maintenance, and recreation. 

In this study, we focused on the construction period only. Long-term
onitoring of crushed stone fords is necessary to assess their impact on

quatic ecosystems in the context of road system management. Crushed-
tone fords stability and sediment input must be assessed in relation to
ehicle size and crossing frequency over a sufficiently long period. The
mall suspended sediment loads generated by ford construction supports
he need for long-term monitoring studies. The method described in this
aper could also be used to measure sediment input from other types
f stream crossings. Calculating sediment input from various types of
tream crossings in a life-cycle analysis is also necessary to provide bet-
er insight for managers in charge of planning road systems. 

Ongoing companion studies are focusing on the operational cost of
onstructing crushed-stone fords and the impacts that all-wheel-drive
ehicles crossing unimproved fords have on fish behavior. In the future,
quatic habitat and fish behavior studies should be combined with the
nalysis of sediment inputs related to alternative stream crossing struc-
ures. 
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