

Effets de la co-application du biochar et de biosolides de papetière sur l'abondance, la diversité et la structure des communautés des champignons mycorhiziens arbusculaires

Eric Manirakiza^{1,2}, Chantal Hamel², Noura Ziadi², Hani Antoun³ & Antoine Karam¹

¹Dept. Sols et génie agroalimentaire, Université Laval. ²Agriculture et Agroalimentaire Canada. ³Centre de Recherche en Innovation sur les Végétaux, Université Laval.

Colloque/Mycorhizes 2019

30 Octobre 2019

Intérêt agricole des BP

Propriétés physico-chimiques

- Agrégation et densité du sol
- Teneur en matière organique
- Apport en nutriments (N, P, K) et micronutriments.

Propriétés biologiques

- Biomasse microbienne
- Activités enzymatiques

Introduction
Hypothèse
Objectif
Méthodlogie
Résultats
Conclusion

Fertilité et qualité du sol

Rendement des cultures

Intérêt agricole du biochar 1/2

- Atténuation des changements climatiques :
 - Séquestration à long terme du carbone dans le sol;
 - > Limitation des émissions de gaz à effet de serre.
- Amélioration des propriétés physico-chimiques:
 - > pH des sols acides
 - > CEC
 - Aération
 - Rétention de l'eau et des nutriments

Introduction Hypothèse Objectif Méthodologie Résultats

Conclusion

Intérêt agricole du biochar 2/2

- Communautés microbiennes incluant les champignons mycorhiziens arbusculaires (CMA)
 - Source de nutriments
 - Habitat favorable
 - Détoxification du sol

Certains biochars contiennent des substances chimiques toxiques qui peuvent inhiber la croissance des microorganismes

Co-application plus bénéfique qu'une application individuelle?

Introduction
Hypothèse
Objectif
Méthodologie
Résultats
Conclusion

Par une étude en incubation, nous avons observé:

- amélioration du pH et de la CEC;
- modération de la libération de l'azote (cas de BP avec des teneurs elevées en azote)
- augmentation de l'apport en nutriments, surtout P et K ;
- réduction de la disponibilité de certains métaux;
- effet positif sur la biomasse microbienne.

Importance d'évaluer l'effet sur les CMA pour la qualité du sol.

Hypothèse

Introduction
Hypothèse
Objectif
Méthodologie
Résultats
Conclusion

Par rapport à l'application du biochar et de BP seuls, la co-application du biochar et de biosolides mixtes de papetières améliore l'abondance, la diversité et la structure des communautés des CMA.

Objectif

Introduction Hypothèse Objectif Méthodologie Résultats Conclusion

Évaluer l'effet de la co-application du biochar et de BP sur:

- la colonisation racinaire du maïs (Zea mays L.) et de soya (Glycine max L.);
- la diversité des CMA;
- la structure des communautés des CMA;
- le phosphore de la biomasse microbienne (PBM).

Dispositif expérimental 1/2

- Deux ans d'expérimentation au champ, 2018 et 2019 à la ferme expérimentale de l'Université Laval à St Augustin, Québec.
- Deux champs, une rotation maïs soya sur l'un et soya-maïs sur l'autre.
- Le sol est un loam (14-16% argile, 34-49% limon, 35-51% sable).

Les BP :

- \triangleright C/N = 26,1;
- \rightarrow pH = 7,7;
- \triangleright phosphore total = 1,16 g kg⁻¹ (disponible à 80%)

Le biochar:

- Pyrolyse lente d'un mélange de conifères (à 400 °C);
- \rightarrow pH = 11,8;
- \triangleright phosphore total = 5,29 g kg⁻¹ (disponible à 80%).

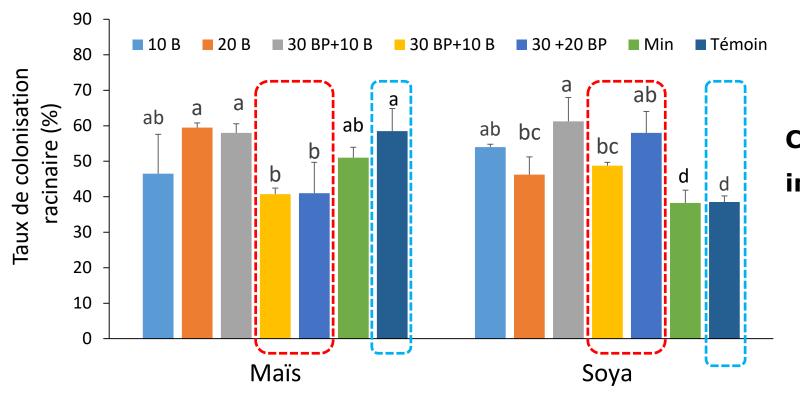
Introduction Hypothèse Objectif Méthodologie Résultats

Conclusion

Dispositif expérimental 2/2

- Le dispositif en blocs complets aléatoires
 - ▶ 7 traitements (3 doses (0, 10 et 20 Mg ha⁻¹) de biochar x 2 doses (0 et 30 Mg ha⁻¹) de BP + un traitement minéral);
 - 4 répétitions.
- Application du biochar et des PB au printemps 2018.
- Pas d'application pour l'année 2019 pour évaluer l'effet résiduel
- La taille des parcelle était 3m x 5m avec des interlignes de 76cm.

Introduction Hypothèse Objectif Méthodologie Résultats Conclusion

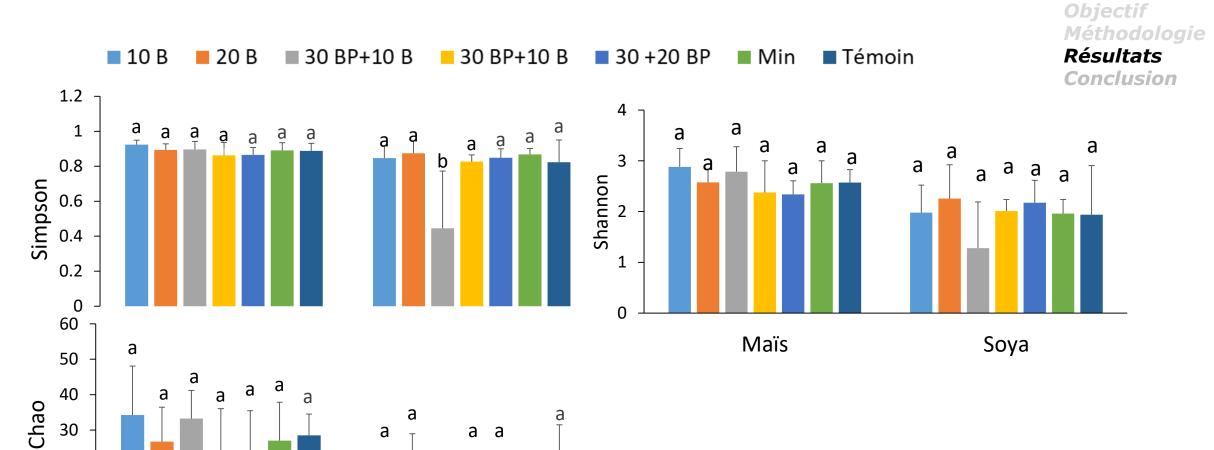

Mesures effectuées (Stade floraison)

- Taux de colonisation racinaire du maïs et de soya par les CMA;
- Indices de diversité (Shannon, Simpson, Chao1);
- la structure des communautés des CMA;
- Phosphore de la biomasse microbienne (PBM).

Introduction
Hypothèse
Objectif
Méthodologie
Résultats
Conclusion

Effet sur le taux de colonisation racinaire

Introduction
Hypothèse
Objectif
Méthodologie
Résultats
Conclusion


Co-application vs application individuelle :

- Diminution dans le maïs
- Effet non significatif dans le soya

Comparaison avec le témoin:

- La co-application diminue le taux de colonisation dans le maïs;
- > L'application individuelle ou combinée augmente le taux de colonisation dans le soya.

Effet sur la diversité des CMA

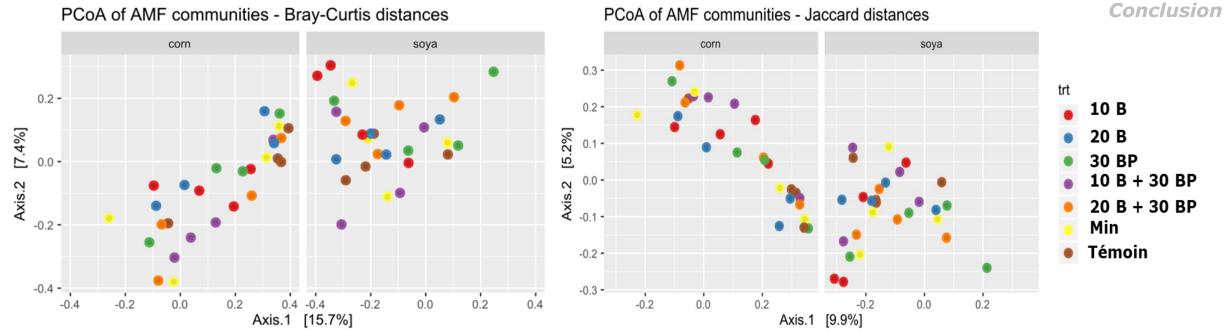
Soya

Introduction

Hypothèse

Non significatif

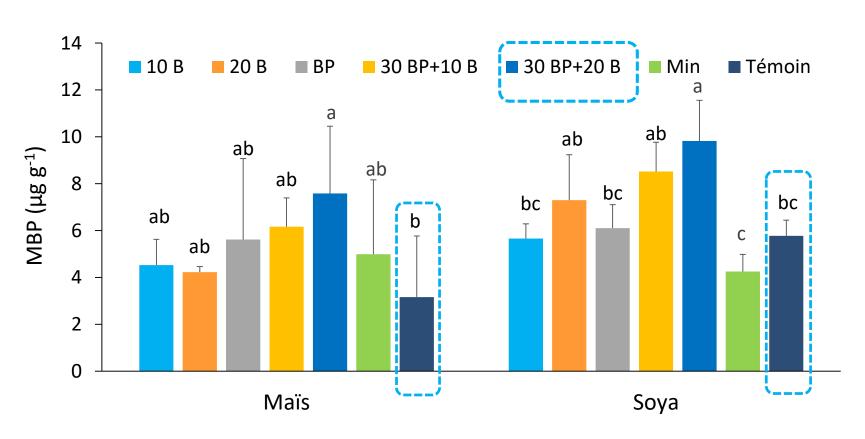
Maïs


20

10

0

Effet sur la structure des communautés des CMA


Introduction Hypothèse Objectif Méthodologie Résultats

Non significatif p = 0.085 (maïs) et 0.616 (soya) par PERMANOVA

Effet sur PBM

Introduction
Hypothèse
Objectif
Méthodologie
Résultats
Conclusion

- Co-application vs application individuelle : effet non significatif
- Comparaison avec le témoin: seul le traitement 30 BP + 20 B a augmenté le PBM dans les deux cultures

Introduction
Hypothèse
Objectif
Méthodologie
Résultats
Conclusion

- Par rapport à l'application individuelle du biochar et des BP, la co-application
 - a diminué le taux de colonisation racinaire du maïs et non du soya;
 - n'a pas affecté l'abondance, la diversité et la structure des communautés des CMA;
 - n'a pas affecté PBM
- Par rapport au témoin, l'application individuelle ou combinée du biochar et des BP
 - > a diminué le taux de colonisation racinaire du maïs et augmenté celui du soya;
 - > n'a pas affecté l'abondance, la diversité et la structure des communautés des CMA;
 - a augmenté PBM

L'application individuelle ou combinée du biochar et des BP n'a pas eu d'effets positifs ni négatifs sur les CMA pendant la première année d'expérimentation.

Remerciements

Professionnels de recherche

Bernard Gagnon

Claude Lévesque

Sylvie Côté

Rejean Desgagnes

Charles Beauparlant

Mario Laterrière

Faculté des sciences de l'agriculture et de l'alimentation

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

