End of the road: Short-term responses of a large mammal community to forest road decommissioning

Rebecca Lacerte, Mathieu Leblond and Martin-Hugues St-Laurent CEF 2022

Environment and Climate Change Canada Environnement et Changement climatique Canada

BOREAL CARIBOU

Anthropogenic disturbances

Should occupy less than 35% of the landscape to offer a 60% probability of maintaining a stable or increasing caribou population

4-1

One more

predator

APPARENT COMPETITION

Facilitate

movement

Reduce disturbances in the landscape

Passive Active RESTORATION

Seip 1992; Rettie & Messier 1998; Courbin et al. 2009; Bastille-Rousseau et al. 2011; Environnement Canada 2011; Whittington et al. 2011; Laurian et al. 2012; Leblond et al. 2013; Pasher et al. 2013; Tigner et al. 2014; Holt and Bonsall 2017; Mumma et al. 2018; Dickie et al. 2020

PASSIVE RESTORATION

Some studies on seismic lines, few on forest roads

FOREST ROADS (St-Pierre et al. 2021)

22% without regeneration

Composed of deciduous instead of coniferous stands

Active restoration seems necessary

Few studies, especially on forest roads

OBJECTIVE

Assess regeneration of vegetation and use of roads by large mammals across four active restoration treatments

HYPOTHESIS 1

The establishment of vegetation on forest roads is influenced by treatment type, as well as by the environment surrounding road segments

HYPOTHESIS 2

The use of roads by mammals is influenced by treatment type, as well as by the environment surrounding road segments, and the distribution of other species

METHODS

CLOSED

Closing roads to traffic

CLOSED

6

Closing roads to traffic

DECOMPACTED

Closing roads and decompacting the soil

CLOSED

Closing roads to traffic

DECOMPACTED

Closing roads and decompacting the soil

PLANTED

ANG

Closing, decompacting, and planting black spruce trees

CLOSED

Closing roads to traffic

DECOMPACTED

Closing roads and decompacting the soil

PLANTED

Closing, decompacting, and planting black spruce trees

ENRICHED

All of the above, and adding enriched soil at the base of planted spruce

CLOSED

Closing roads to traffic

DECOMPACTED

Closing roads and decompacting the soil

PLANTED

Closing, decompacting, and planting black spruce trees

ENRICHED

All of the above, and adding enriched soil at the base of planted spruce

CONTROL

REGENERATION

ABUNDANCE

PARTIAL CANONICAL CORRESPONDENCE ANALYSIS

Number of stems ~ Treatments +

Environmental variables

OCCURENCE

MULTIPLE MIXED LOGISTIC REGRESSION

Presence/absence

Treatments

HURDLE

OCCURRENCE

MULTIPLE MIXED LOGISTIC REGRESSION

FREQUENCY OF USE MULTIPLE MIXED NEGATIVE BINOMIAL

Presence/absence Number of events (presences)

Treatments

N

Intensity of use by mammals

Environmental variables

Competing with black spruce Moose and bear diet

Bastille-Rousseau et al. 2011; Laurian et al. 2012; Lesmerises et al. 2015; Ménard et al. 2019; Dhar et al. 2020

EFFECT OF ROAD DECOMMISSIONING TREATMENTS

7

EFFECT OF ROAD DECOMMISSIONING TREATMENTS

Occurrence Frequency

PLANTED

Non-significant trend Used decompacted treatment more 0.72 vs. ≤0.59 events/100 camera-days Increase food resources for bears

Partial canonical correspondence analysis

Currant Raspberry

Blueberry

EFFECT OF ROAD DECOMMISSIONING TREATMENTS

Less attractive to predators and alternate prey Reduce predation risks

Bastille-Rousseau et al. 2011; Laurian et al. 2012; Lesmerises et al. 2015; Ménard et al. 2019; Dhar et al. 2020

EFFECT OF THE SPACE USE BY OTHER MAMMALS

Seip, 1992; James et al. 2004; Peters et al. 2013; Leblond et al. 2016; Kittle et al. 2017

EFFECT OF THE ENVRIONMENT SURROUNDING ROADS

Roads surrounded by wetlands may represent a high predation risk

Hins et al. 2009; James et al. 2004; Bowman et al. 2010; Peters et al. 2013; Ray 2014; Finnegan et al. 2019

TAKE HOME MESSAGES

WHAT IS THE BEST TREATMENT TO RESTORE WOODLAND CARIBOU HABITAT?

CLOSED, DECOMPACTED & PLANTED

Black spruce

Should lead to the establishment of a forest cover dominated by black spruce

Food resources for bears and moose (and wolves)

IMPLICATIONS FOR CARIBOU

Most effective treatment to restore caribou habitat: PLANTED TREATMENT

Vegetation cover and composition – and the response of mammals – are likely to change over time To reduce costs over a large area, what types of forest roads need to be restored? St-Pierre et al. 2021

Must be applied on large area \$\$\$

~2 175 CAN\$/km

Must combine decommissioning with

Conservation strategies

Habitat protection Disturbance level management And others e.g. translocation, predator control

SER

End of the road: Short-term responses of a large mammal community to forest road decommissioning

Rebecca Lacerte", Mathieu Leblond", Martin-Hugues St-Laurent

RESEARCH ARTICLE

Determinants of vegetation regeneration on forest roads following restoration treatments: implications for boreal caribou conservation

Rebecca Lacerte¹, Mathieu Leblond², Martin-Hugues St-Laurent^{3,4}

THANK YOU!

Conseil de la Première Nation des Innus Essipit Marc St-Onge Jessie Moreau Kathleen Goulet

Members of the Équipe de recherche en gestion de la faune terrestre

> Help with statistical analysis Alain Caron François Rousseu

> > Field assistants Naomy Bédard Kloé Chagnon-Taillon

Rebecca.Lacerte@uqar.ca

COST ESTIMATE

CLOSED

~193 \$/Closing

DECOMPACTED

~747 \$/km

PLANTED

~2 175 \$/km

ENRICHED

Planting ~1 428 \$/km ~525 \$/km to purchase the plants

Organic soil

~1 773 \$/km

Partial canonical correspondence analysis

Multiple mixed logistic regression

Occurrence and frequency of use

	Boreal caribou			Gray wolf			Black bear			Moose				
Variables	Occ.		Freq. Occ.		Occ.	Occ.		Freq.		Occ.		Freq.		
	β	95% CI	β	95% CI	β	95% CI	β	95% CI	β	95% CI	β	95% CI	β	95% CI
Treatments														
Intercept	-4.55	[-6.48: -2.61]	-4.27	[-5.16: -3.38]	-4.16	[-6.21: -2.12]	-1.82	[-2.58: -1.07]	-3.72	[-4.19: -3.24]	0.60	[-0.06: 1.13]	-3.02	[-3.28: -2.76]
Decompacted	0.54	[-1.24: 2.32]	0.91	[-0.10: 1.93]		_	0.35	[-0.63: 1.33]	0.26	[-0.34: 0.86]	-0.15	[-0.87: 0.58]	-0.15	[-0.52: 0.21]
Planted	0.30	[-1.50: 2.10]	1.38	[0.40: 2.37]		_	0.78	[-0.21: 1.76]	-0.12	[-0.71: 0.48]	-0.03	[-0.77: 0.71]	-0.38	[-0.77: 0.00]
Enriched	-1.36	[-3.41: 0.69]	0.95	[-0.36: 2.25]		_	-0.20	[-1.22: 0.82]	-0.32	[-1.06: 0.41]	0.01	[-0.73: 0.75]	-0.05	[-0.42: 0.32]
Other species														
Use by caribou		_		_		_	0.31	[0.03: 0.59]		-		_		-
Use by wolf		_		_		_		_		_	0.25	[-0.21:0.71]	0.10	[0.01: 0.20]
Use by bear		_		_		_		_		_	0.31	[-0.04:0.66]	-0.00	[-0.11: 0.11]
Use by moose		_		_	0.57	[0.02: 1.12]	0.12	[-0.19: 0.44]		_		_		_
Local bear density	0.90	[0.23: 1.57]		_		_		_		_		_		_
Local moose density	-4.91	[-8.80: -1.02]		_		_		_		_		_		_
Land cover types a														
Wetland	-1.58	[-3.20: 0.05]	1.09	[0.10: 2.08]		_		_	0.19	[0.01: 0.37]		_		_
Deciduous forest		_		_		_		_	-0.16	[-0.42: 0.10]		_		_
Coniferous forest	1.44	[0.75: 2.12]	0.63	[0.32: 0.94]		_		_		_		_		_
Natural disturbances		_		_		_		_		_	0.37	[0.04: 0.71]		_
Recent clearcuts		_		_		_		_		_	0.28	[-0.00: 0.57]		_
Road density		_		_		_		_		_	-0.32	[-0.59: -0.06]		_
Concomitant variables														
Local caribou density	1.05	[0.45: 1.66]	-0.97	[-1.97: -0.02]		_		_		_		_		_
Local bear density		_		_		_	-0.13	[-0.47: 0.22]	0.00	[-0.20: 0.21]		_		_
Local moose density		_		_		_		_		_		_	-0.07	[-0.22: 0.07]
Sampling effort	-0.31	[-0.96: 0.35]		Offset	0.21	[-0.54: 0.97]	0.29	[-0.03: 0.61]		Offset	0.24	[-0.01: 0.49]		Offset
Road segment ID	0.76	NA	0.00	NA	0.93	NA	0.37	NA	0.00	NA	0.09	NA	0.23	NA
Model fit														
AŬC		0.93		_		0.90		0.70		_		0.66		_
R ² marginal		_		0.50		_		_		0.17		_		0.08

Radius buffer (ΔAIC_c)

Doding buffor	Boreal	caribou	Gra	y wolf	Blac	k bear	Moose	
Kaulus Duller	Occ.	Freq.	Occ.	Freq.	Occ.	Freq.	Occ.	Freq.
Undisturbed								
250 m	9.97	8.29	_	_	1.06	0.00	_	0.00
500 m	3.49	9.23	_	_	0.00	2.34	0.00	0.22
1 km	0.00	0.00	0.00	_	1.30	3.67	_	1.26
Disturbed								
250 m	17.84	6.39	2.61	_	0.00	2.94	0.00	0.00
500 m	15.34	0.00	1.04	_	0.30	0.57	10.40	0.38
1 km	0.00	_	0.00	_	_	0.00	_	0.45

Events/100 cameras-days [CI 95%]

Treatments	atments Boreal c			Gray wolf		llack bear		Moose
Closed	0.20	[0.11: 0.33]	0.11	[0.05: 0.21]	0.40	[0.26: 0.56]	3.74	[3.30: 4.22]
Decompacted	0.52	[0.38: 0.70]	0.06	[0.02: 0.13]	0.72	[0.55: 0.93]	2.73	[2.38: 3.11]
Planted	0.76	[0.58: 0.98]	0.06	[0.02: 0.14]	0.59	[0.43: 0.79]	2.05	[1.74: 2.40]
Enriched	0.23	[0.14: 0.35]		0.00	0.25	[0.15: 0.37]	2.98	[2.61: 3.38]
Local density	0.34	[0.26: 0.45]		0.00	0.04	[0.02: 0.09]	0.79	[0.65: 0.94]

Occurrence and frequency of use

Variables	Dodius	$\overline{\mathbf{v}}$ + SD	Danga	Moo	lel	Description			
v al lables	Kaulus	$X \pm SD$	Kange	Occ.	Freq.	Description			
Wetlands	250-m	0.40±1.30	0–9.25	_	Bear, moose	Bogs, fens, swamp, and sphagnum			
	500-m	0.69±1.44	0-8.73	Bear, moose	_	coniferous forests (%)			
	1 - km	0.71±1.03	0-4.16	Caribou, wolf	Caribou				
Deciduous forests	250-m	1.14±4.43	0-33.24	_	Bear, moose	Deciduous stands of all age classes			
	500-m	1.17±3.35	0-17.39	Bear, moose	_	(%)			
Coniferous forests	1-km	21.01±8.29	5.81-43.52	Caribou	Caribou	Coniferous stands >20 years old (%)			
Natural disturbances	250-m	11.95±13.60	0-55.71	Bear, moose	Moose	Fires, windthrows, and insect			
	500-m	16.12±12.72	0-43.11	_	Caribou	epidemics (%)			
	1-km	17.68±10.78	0.87-47.20	Caribou, wolf	Bear				
Recent clearcuts	250-m	57.99±20.62	7.52–99.95	Bear, moose	Moose	Clearcuts \leq 20 years old (%)			
	500-m	46.58±15.98	8.17-89.42	_	Caribou				
	1 - km	39.11±13.44	16.32-69.72	Caribou, wolf	Bear				
Road density	250-m	3.35±1.04	1.40-6.50	Bear, moose	Moose	Density of forest roads (km/km ²)			
	500-m	2.36±0.75	0.80-4.25	_	Caribou				
	1-km	1.86±0.54	0.75-3.01	Caribou, wolf	Bear				