Spruce budworm (Choristoneura fumiferana) outbreaks: a story of population dynamics, environmental conditions, and defoliation

Morgane Henry

Co-authors: Dr. Brian Leung & Dr. Patrick James

morgane.henry2@mail.mcgill.ca

Forest insect outbreaks: a global concern

Forest insect outbreaks: a global concern

Damage economically important tree species

Carbon release

Influence fire risk

Introduction

Methodology

Results

2

Spruce budworm (Choristoneura fumiferana)

Moth native to eastern Canada and USA

Larvae feed on spruce and fir

Univoltine species (one brood per year)

Cyclical outbreaks every $\sim 30-40$ years

Jerald E. Dewey, USDA Forest Service, United States

3

Goal

Methodology

Frequency of defoliation by spruce budworm from 1954 to 1988. (Williams & Birdsey, 2003)

Introduction

Outbreak Dynamics

Adapted from Kunegel-Lion & Lewis, 2020

Summary 5

Outbreak at the local scale

Outbreak at the local scale

How do environmental conditions impact the development of an outbreak?

How do larvae densities and defoliation

relate to one another?

In	tra	A 11	<u>ot</u> i	n
		M M	U U	

7

How do environmental conditions impact 1 the development of an outbreak?

Estimate the growth rate of each time-series using a state-space model (Humbert et al., 2009)

Assess the impact of environmental predictors with multiple regression

Environmental predictors

Topography (elevation, slope)

Moisture regime (drainage)

Tree proportion (balsam fir, white spruce, black spruce, and hardwood species)

Population growth rates

1

Temperature has the largest impact on growth rate

Spatial structure not entirely explained

By adding "latitude" as a predictor, we increase R^2 by 10%

How do larvae densities and defoliation relate to one another?

Introduction Goal Methodology Results	
---------------------------------------	--

How do larvae densities and 2 defoliation relate?

Aerial surveys of defoliation (SOPFIM)

Optimize "best time-lag"

Effect of environmental conditions

Methodology 2

2 Influence of forest structure on defoliation

Best time-lag: cumulative densities <u>3 years</u> prior observed defoliation

Budworm densities explain most of the variance

Balsam fir and black spruce have opposite effects

Predicting probability of defoliation

Predicting probability of defoliation

Predicting probability of defoliation

Take home messages

Larvae densities data contain very valuable information for making prediction

Spatial structure in growth rates

3 years time-lag

Importance of forest composition for defoliation risk

Next steps and potential application

Earlier forecast of defoliation

Uncertainty modelling

Inform management strategies

Introduction

Goal

Methodology

Results

Summary

16

Thank you!

Questions?: morgane.henry2@mail.mcgill.ca

Supervisors

Brian Leung (McGill) Patrick James (University of Toronto)

<u>Committee member</u> Daniel Kneeshaw (UQAM)

Lab mates from the Leung lab & the James lab

Fonds de recherche Nature et technologies Québec 🍻 🌸

jameslab.ca leung-lab.github.io/leunglab

State-space modelling approach

Hierarchical model

Model natural variation in ecological processes separately from observation error.

Correlation structure model 1

	, act	SPIUCE ASE	Mill 1010	tion	tronflev	apruce	wood ear	DD 506	2 D
lat	0.27	0.11	ov 0.03	ං 0.15	_م . 0.16	-0.34	-0.79	1	3
ack	spruce	0.02	0.13	0.04	-0.04	-0.26	-0.24	- 0.6	5
	ba	Isamfir	0.16	0.1	-0.02	-0.11	-0.19	- 0.4	↓ <u>2</u>
elevation				0.23	-0.18	-0.05	-0.47	- 0	
Slopefrom				omElev	-0.08	-0.04	-0.21	0.2	2 4
white				spruce	-0.1	-0.13	0.6	6	
Hardwood							0.3	0.8	8

Temperature has the largest impact on growth rate

Spatial structure not entirely explained (latitude was a better predictor)

Latitude explains most of the variance

Latitude is a proxy for multiple environmental variables

Positive effect of hardwood proportion on growth rate (?)

Summary

11

Interaction model 1

Determination of the best lag

General model : defoliation \sim lagged L2

1. Discrete

2. Cumulative

- 3. Weighting functions
 - \succ Negative exponential
 - ➢ Gamma

Use "optim" in R to estimate the best parameters of each weighting functions.

Best lag

Cumulative: L2 densities 3 years prior to observed defoliation Multiplicative: bigger impact if L2 densities stay high Weighting function: factors derived from a gamma distribution of parameters shape = 9.0, scale = 0.2

Defoliation ~ $0.26*\log(L2_{t-1}) + 0.58*\log(L2_{t-2}) + 0.13*\log(L2_{t-3})$