PRODUCTION ET UTILISATION DU BIOCHAR POUR LA RESTAURATION D'UN OXISOL TROPICAL

DJOUSSE KANOUO Boris Merlain¹, Doctorant; Alison D.Munson¹, Suzanne Allaire², Professeures ¹ Faculté de foresterie, de géographie et de géomatique, Centre d'Étude de la Forêt; ²Faculté des sciences de l'agriculture et de l'alimentation

1- Fondement

- Nécessité de caractériser les biochars et de normaliser le produit en vue d'une exploitation à grande échelle;
- Nécessité de développer des technologies propres de production du biochar pour les petits exploitants agricoles des pays en voie de développement;
- Nécessité de mieux documenter les interactions biochar- microbiologie du sol.

2- Problématique

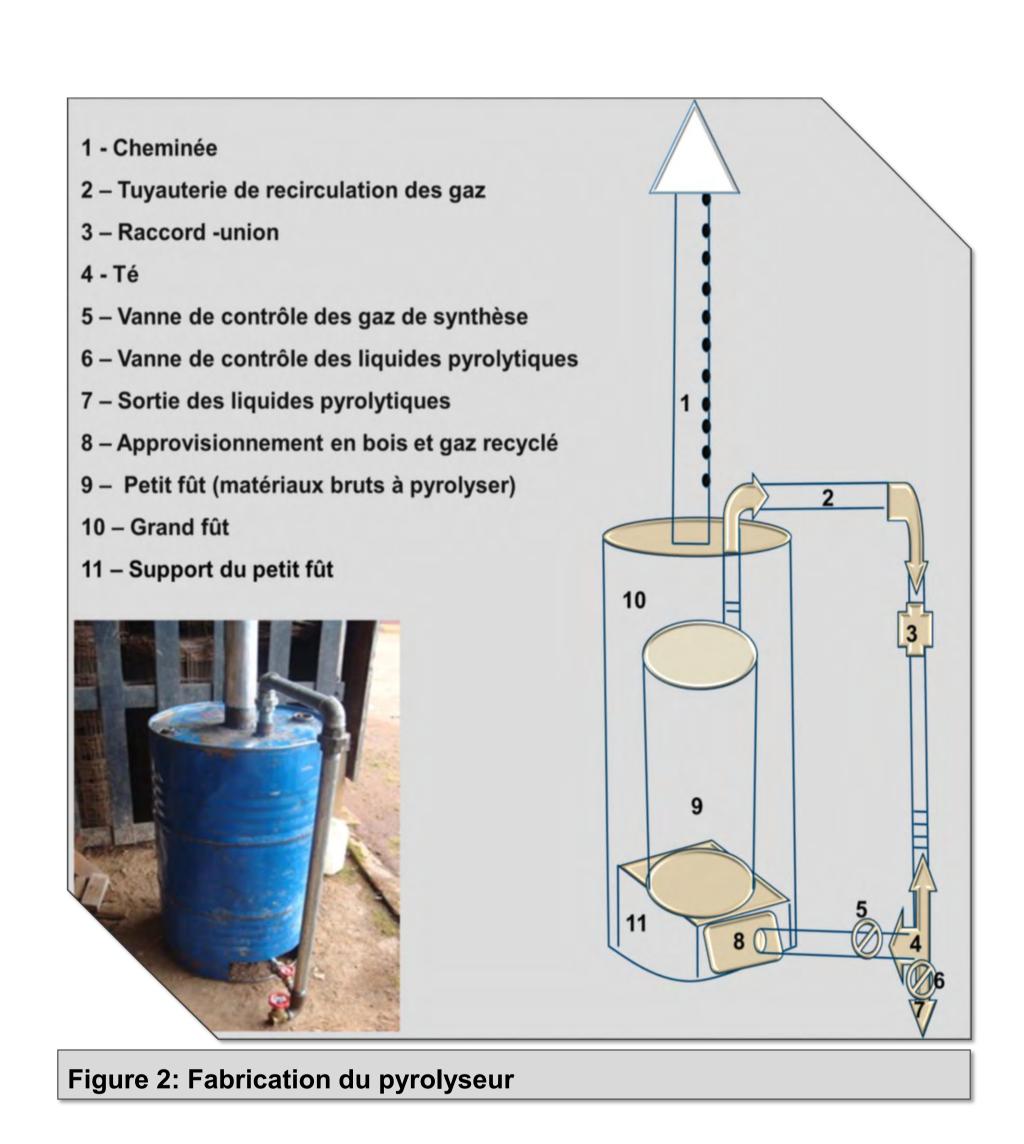


Figure 1: Cercle vicieux déforestation-dégradation des sols-déforestation: Biochar solution?

3- Objectifs

- 1- Produire et caractériser le biochar à base des rafles de maïs et des écorces d'eucalyptus.
- 2- Évaluer l'impact comparatif du biochar et du mode de labour sur les propriétés physico-chimiques d'un oxisol et le rendement de la culture du maïs.
- **3-** Évaluer la diversité microbienne d'un oxisol tropical amendé avec deux types de biochar sous deux modes de labour.

4- Méthodologie

F = Fertilisation minérale (200kg/ha de NPK et 10 Kg/ha de N) BF = Biochar écorces d'eucalyptus BA = Biochar rafles de maïs P = Paille T1 = P + FT2 = BA + F5 Traitements, T3 = BF + F30 parcelles expérimentales T4 = BA + P +de 4*4 m² T5 = BF+P+

Figure 4: Dispositif expérimental et traitements

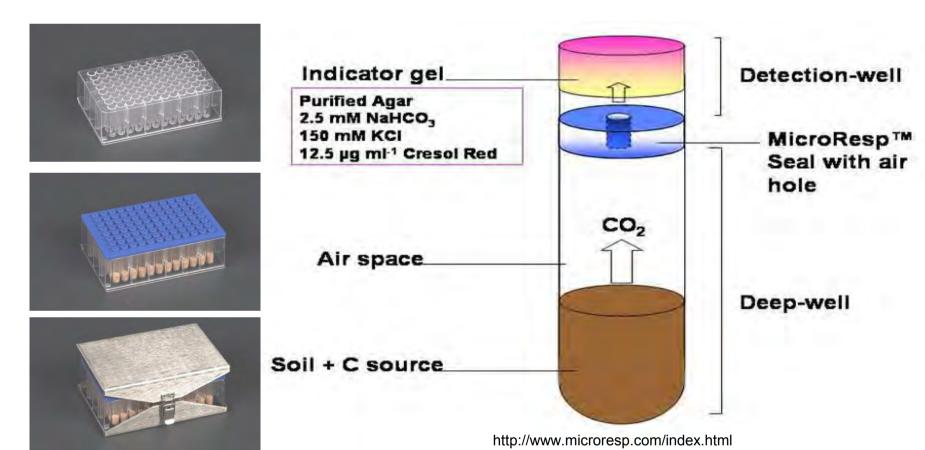
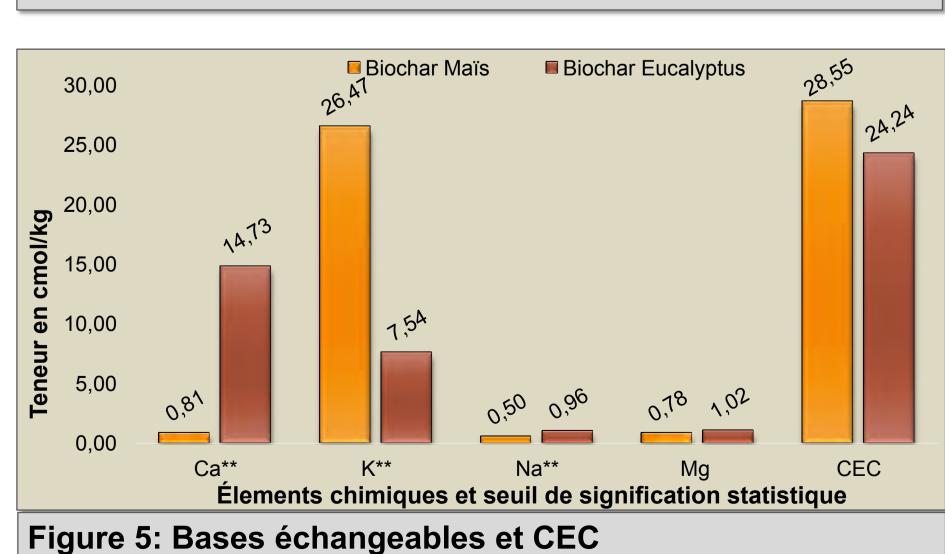



Figure 5: MicrorespTM pour déterminer la diversité microbienne

5- Résultats et discussions préliminaires

- La température de fabrication a été de 281,4 ± 37,6°C; La variation reste moins importante comparée à la recommandation proposées de 20% (±56,2°C dans notre cas). (EBC, 2012 version 5, révisée en janvier 2015);
- Le rendement moyen de notre pyrolyseur varie entre 33 % et 68%. Il est supérieur à celui de 30-40% obtenu avec un dispositif similaire au Kenya et très meilleur à celui de 10-22% pour les systèmes traditionnels (Adams J.C, 2009),

Ces deux biochars sont significativement différents aussi bien au niveau visuel que sur la base des propriétés physico-chimiques; Caractéristiques similaires à celles retrouvées dans la littérature (Liu et al, 2014, Guerero et al, 2005);

Tableau 2: Biochar et normes (IBI et EBC)				
Paramètres	European Biochar Certificate (EBC)	International Biochar Initiative (IBI)	Mon Biochar	
	C total	C organique	Maïs	Eucal.
Carbone	≥50 % : Biochar	≥ 60 % : Classe 1 ≥ 30 % Classe 2 < 60 %	68,77%	56,17%
		≥ 10 % - < 30 % à Classe 3	29,72%	27,79%
	< 50% Minéraux de bio carbone	Classe 4 < 10 % pas du biochar		
	Carbone graphitique 10-40% du C.total		54,90%	44,40%
	carbone inorganique		1,90%	6,20%
H/Corg	Biochar si ≤ 0.7	Biochar si ≤ 0.7	0,4	0,6
O/C	Biochar si ≤ 0.4	Pas requis	0,2	0,5
Cendres	Déclaration	Déclaration	5,28	10
pH eau	Déclaration si pH > 10	Declaration	9,31	8,11

Teneurs en Co, Cr, Cu, Zn, As, Cd, Hg, Mo, Ni, Pb, Se largement inférieures à celles prescrites par les normes de L'Initiative Internationale pour le Biochar (IBI) et du Certificat Européen pour le Biochar (EBC)

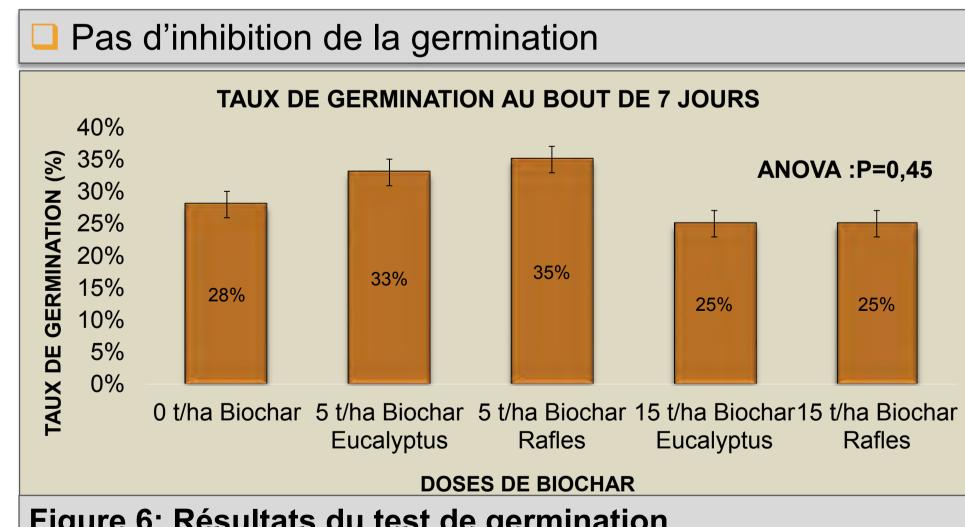


Figure 6: Résultats du test de germination

- Le biochar d'Eucalyptus aurait une action bénéfique plus immédiate en agriculture (teneur en éléments solubles et N >>>et carbone graphitique<<<) comparée à celle des rafles de maïs; ce dernier se prêterait mieux à la séquestration du carbone (Corg>>, cendres<<< et C/N>>>);
- Ces deux biochars sont significativement différents;
- Les biochars d'écorce d'eucalyptus et de rafles de Maïs remplissent bien l'essentiel des critères de définition proposés par le IBI et le EBC. Selon IBI , biochar de classe 3;
- Les biochars peuvent absorber jusqu'à 6 fois leur poids l'humidité dans l'air; ils sont basiques, et présentent de fortes teneurs en potassium et phosphore,

