

Contexte

- ➤ La pessière à mousses est le plus vaste des domaines bioclimatiques du Québec avec une superficie de plus de 412 000 km²
- ➤ Ceinture d'argile: « Paludification » croissance des pessières noires
- > Paludification est un processus naturelle
 - ➤ Accumulation de matières organique au fil du temps
 - Accumulation de mousses en surface
 - ➤ Relief plat
 - > Climat froid
 - > Forte humidité
 - Abondance de sols argileux faible perméabilité.
 - Perte de productivité résineuse
 - >Succéssionnelle considéré réversible
 - >Édaphique considéré permanente

Contexte

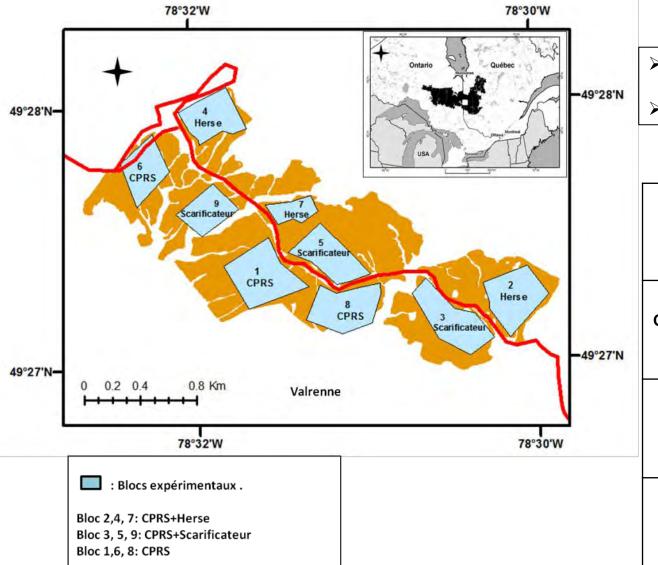
1.- Évaluer la réduction de l'épaisseur de la couche organique suite à la préparation mécanique du sol (PMS)

- 2.- Déterminer l'efficacité entre deux machines de préparation mécanique du sol (Scarificateur T26 et herse forestière):
 - √ Réduire l'épaisseur de la couche organique (ECO)
 - ✓ Créer de bons microsites

•

Contexte Objectifs Hypothèses

1- Une diminution significative de l'ECO sera observée avec la PMS par rapport à la CPRS seulement .


2- La herse forestière comparée au scarificateur T26 obtiendra les meilleurs résultats en termes de **diminution de l'ECO** et création de bons microsites. (Lafleur *et al.*, 2011)

3- Nous supposons que les **pentes** élevées (> 30%) limitent l'efficacité de la PMS dans la réduction de l'ECO et dans la création de bons microsites.

Contexte Objectifs Hypothèses Méthode

: Chemin forestier.

- > 8 transects géoréférencés (400 m) par bloc
- > Espacement 20 m

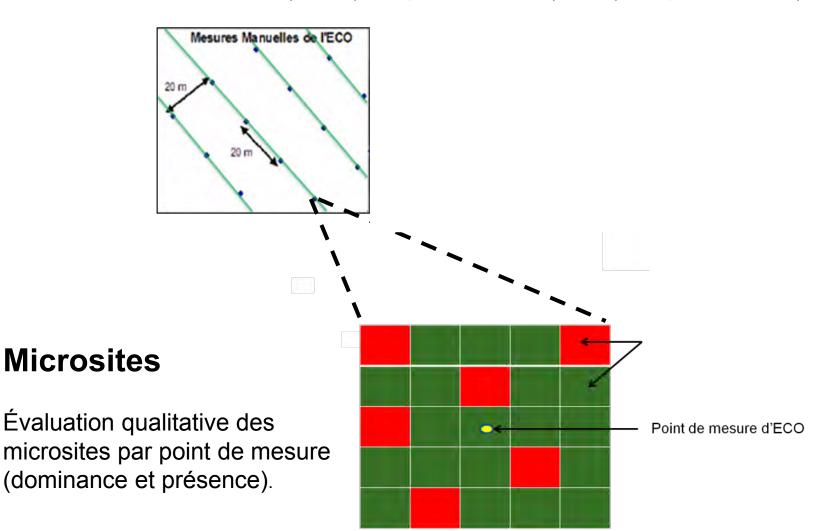
Opérations et traitements	Nombre total d'observations
CPRS +Scarifiage (T26)	505
CPRS + Hersage	483
CPRS	484

Contexte Objectifs Hypothèses

Méthode

Herse forestière

- ✓ Sols argileux, terrains en friche.
- ✓ Productivité: 0.5-0.9 ha/HMP


Scarificateur T26

- ✓ Le plus utilisé dans la forêt boréale
- ✓ Productivité: 0.5 ha/HMP

HMP: Heure Machine Productive

Contexte Objectifs Hypothèses Méthode

ECO = Avant CPRS (2010) + après CPRS (2011) + après PMS (2012).

Contexte Objectifs Hypothèses Méthode

Un bon microsite devrait favoriser la disponibilité en éléments nutritifs, permettre aux plants un accès à l'eau puis enrayer le plus possible la compétition (Orlander et al., 1998).

Clé de qualité des microsites (Guide CERFO, 2007 ; Lavoie, 2006; Thiffault, 2005)

Bons microsites

- ➤ Minéral + Organique
- >Humus
- ➤ Humus + Mésique

Mauvais microsites

- Minéral tassé ou mal drainé
- ➤ Mottes instables
- ➤ Fibrique et Mousses

Contexte Objectifs Hypothèses

Méthode

Variables réponse: % Réduction ECO

% Réduction ECO =
$$\frac{\text{ECO aprés PMS} - \text{ECO aprés CPRS}}{\text{ECO aprés CPRS}} \times 100$$

- Modèles Mixtes et comparaison de Tukey.
- Sélection de modèles (AIC) et inférences multi modèles: 8 Modèles candidats

Modèle Globale: Avec toutes les variables

% Réduction ECO~ traitement (Herse, Scarificateur)+ ECO avant coupe + ECO après CPRS_2011 + pente + azimut +sentier machinerie de récoltes (oui+non) + bloc (6 blocs).

Méthode

Variables réponse: Qualité des microsites

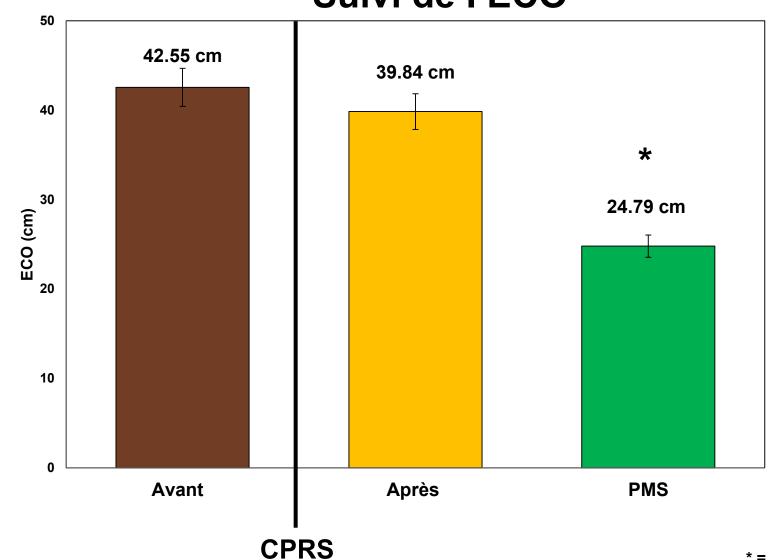
- > Qualité Microsites= % Bon et % mauvais par technique de PMS.
- > Test du Khi²: Validation des pourcentages (bon/mauvais microsites).
- > Modèles linéaires généralises avec régression logistique.
- > Sélection de modèles (AIC) et inférences multi-modèles: 9 Modèles candidats

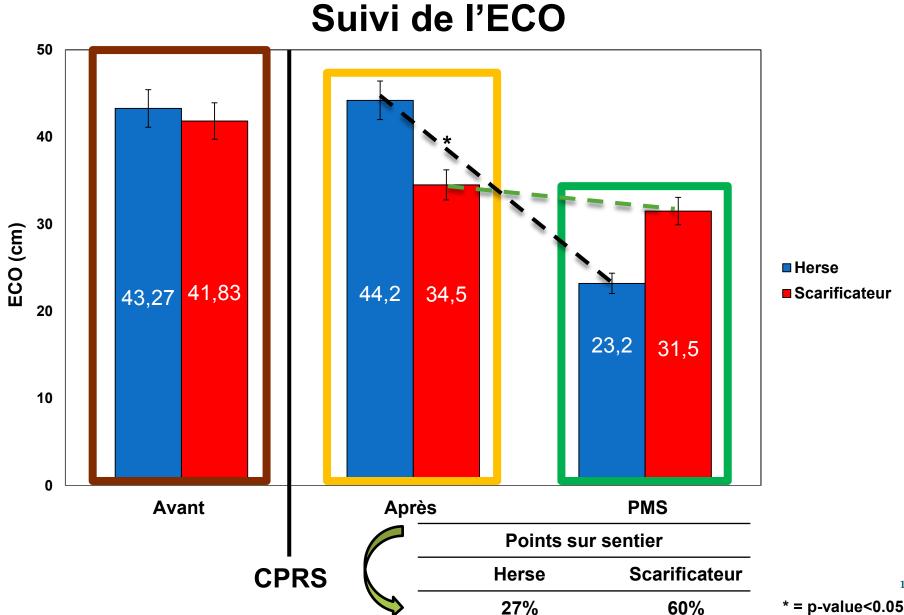
Modèle Globale: Avec toutes les variables:

Microsites ~ % Réduction ECO +traitement + ECO après CPRS_2011 + ECO avant coupe CPRS + Pente + azimut+sentier de machinerie de récoltes

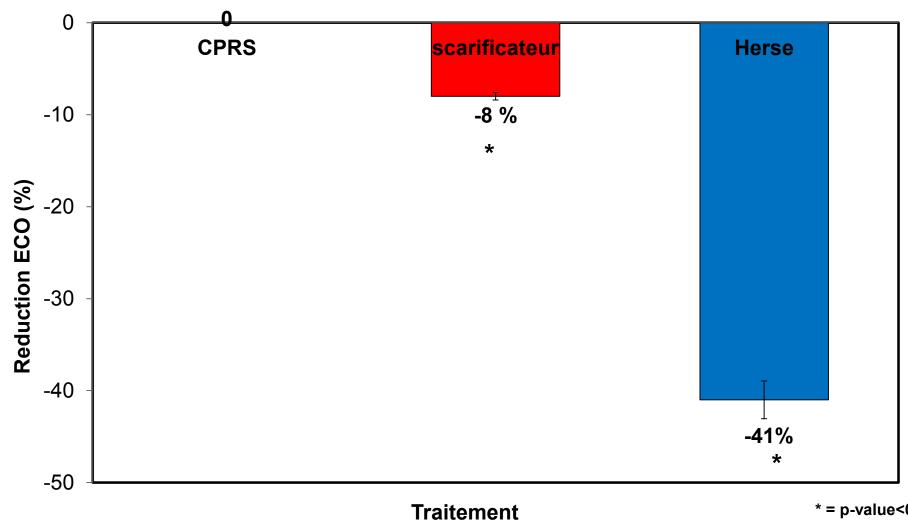
Contexte Objectifs Hypothèses

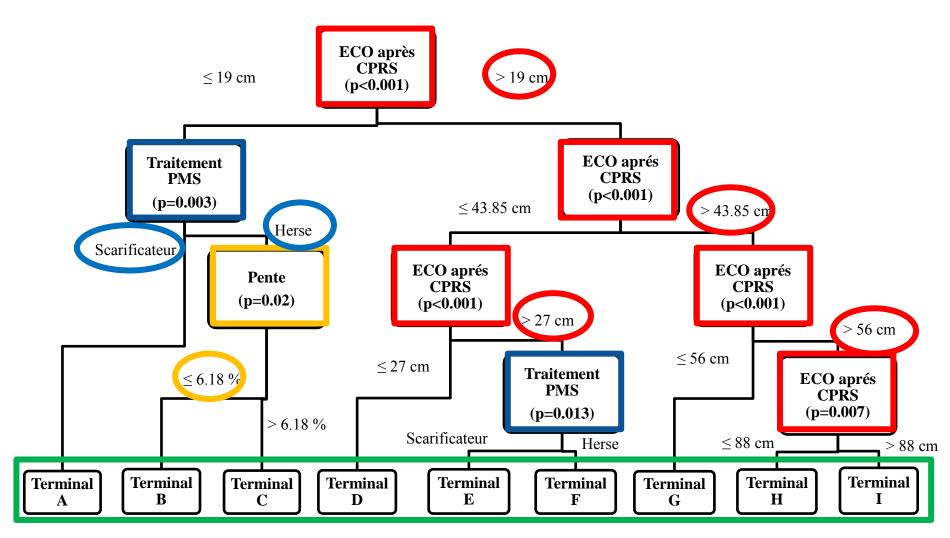
Méthode

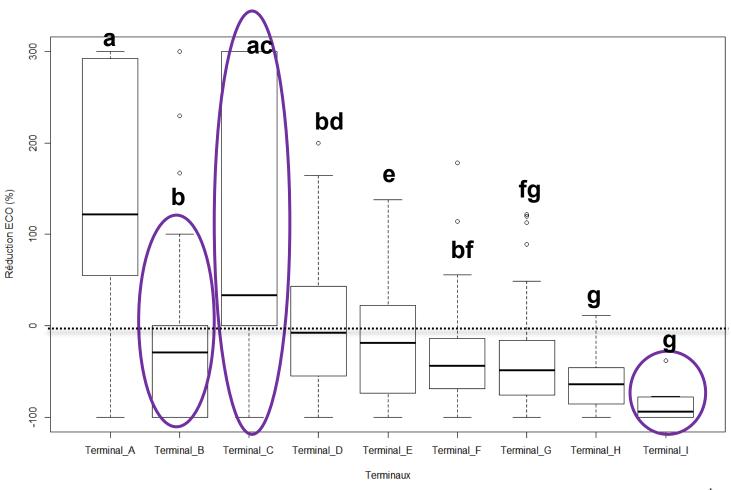

> Arbre de régression: diviser (division binaire) les données sous forme d'arborescence (Ouellette et al., 2004; Anonyme, 2009)

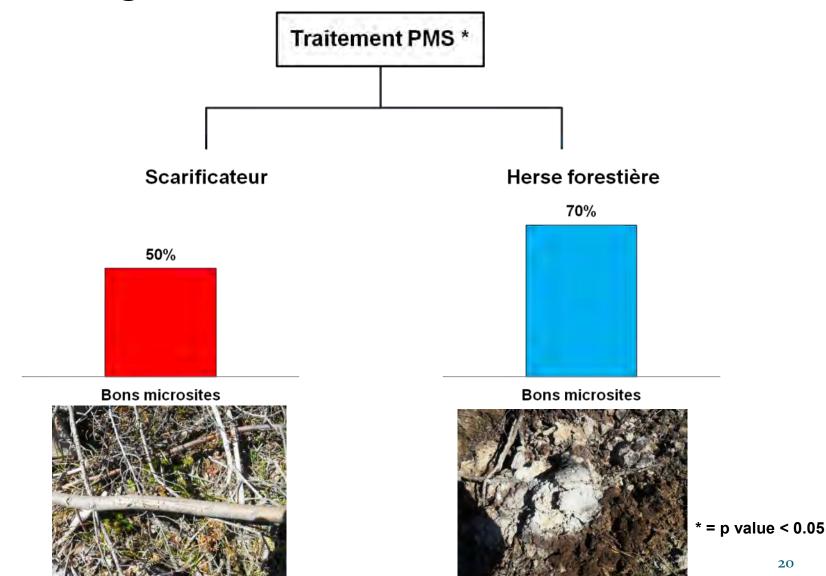

>Arbre de régression (tree, rpart, mvpart):

- > Hiérarchiser l'effet de chaque variable sélectionné.
- > Segmenter et ressortir les interactions complexes entres les variables.
- > Relier la réduction d'ECO à la qualité des microsites






% Reduction ECO par technique PMS


%Réduction ECO ECO après CPRS + Traitement + **Pente**

Réduction- augmentation d'ECO par terminal

Arbre de régression : Qualité microsites ~ traitement

Synthèse de l'analyse

	ECO après CPRS*								
	ECO < 19 cm		19 cm < ECO < 44 cm		44 cm < ECO < 56 cm		56 cm <eco 100="" <="" cm<="" th=""></eco>		
	Н	erse	Scarificateur	Herse	Scarificateur	Herse	Scarificateur	Herse	Scarificateur
Pente (%)*	< 6%	>6%							
% réduction ECO*	(-22%)	86%	139%	-39%	-22%	-44%	-44%	-64% à -86%	-64% à -86%
Bons microsites*	6	63%	42%	70-74%	50-58%	48%	61%	72%	50%

Microsites organiques

* = p value < 0.05

Conclusions

- Ce projet a permis d'identifier les seuils de performance de la PMS sur les sites paludifiés en pessière noire de l'ouest (guide).
- ➤ PMS plus efficace pour réduire l'épaisseur de la couche organique comparé à la CPRS (24.7 cm vs 39.8 cm).
- ➤ La réduction d'ECO est contrôlée par: ECO initiales + PMS + Pente.
- La qualité des microsites est contrôlée par la technique de PMS.
- > Globalement: La Herse plus efficace que le scarificateur T26.
 - > sauf pentes > 6%, paludification < 56 cm.

Discussion

➤ Herse impraticable sur: Terrains humides, rocheux, accumulation résidus de bois (Coates et Haeussler, 1988; Beaudry, 1990; Von der Gönna, 1992; McKinnon et al., 2002).

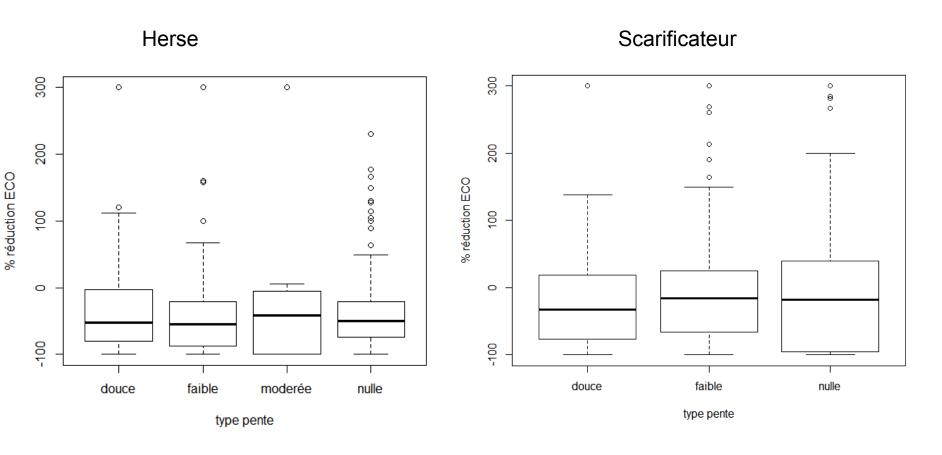
➤ Herse permettrait la création de bons microsites: 100% plantabilité sur sol non-paludifiés (Manuel de foresterie, 2006).

> Tester plus de technique de PMS sous de sites soumises à la paludification, notamment en hiver.

➤ Analyser la qualité des microsites (texture, composition nutritive,...).

- > L'efficacité de la PMS devrait se mesurer aussi sur:
 - ✓ La capacité de la forêt à maintenir ou accroître sa productivité dans le temps
 - ✓ La rentabilité financière du traitement
 - ✓ L'efficacité à contrer la paludification à plus long terme

MERCI!



Effet de la pente sur la PMS

Pas de différence significative

Plantation: 2500 pin gris / ha=1250 plants/5000m²

Microsites: Test Khi²

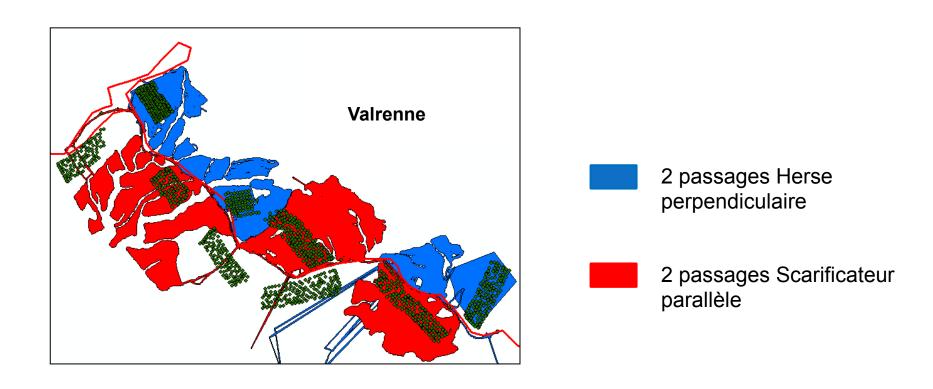
Technique de PMS	Qualité microsites	Nombre de microsites	Hypothèse H0 en pourcentage	P-value test Khi ²	Pourcentage
Herse	Bons	330	70%	n=0.42 (n>0.0E)	Volidá
	Mauvais	153	30%	p=0.42 (p>0.05)	
Scarificateur	Bons	247	50%	n=0.6E (n>0.0E)	- Validé
	Mauvais	257	50%	p=0.65 (p>0.05)	

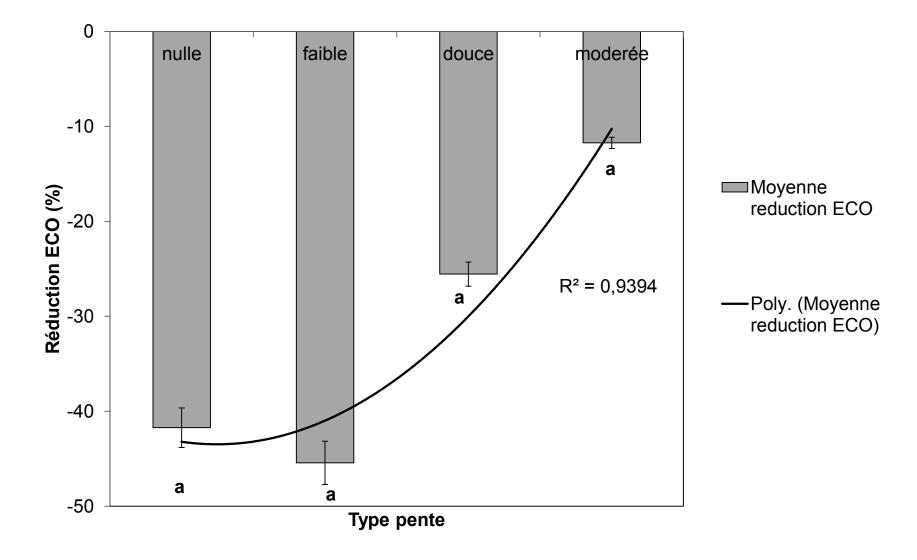
≻Conditions Paludifiés:

- ➤ Herse: Potentiel de plantation 70% /ha
- > Scarificateur : Potentiel de plantation 50% /ha

Présence Microsites

Technique de PMS	Qualité microsites	Nombre de microsites	Hypothèse H0 en pourcentage	P-value du test Khi-2	Validation du pourcentage
Hamaa	Bons	329	70%	p-value=0.36	
Herse	Mauvais	154	30%	(p>0.05)	V / - P - I /
Scarificateur	Bons	245	50%	p-value=0.5	- Validé
	Mauvais	259	50%	(p>0.05)	


Répartition du nombre d'observations


Opérations et traitements	Numéro de bloc	Superficie (ha)	Nombre total d'observations
CPRS +Scarifiage (T26)	3 5 9	31,9 38,0 60,9	505
CPRS + Hersage	2 4 7	39,9 27,0 19,8	483
CPRS	1 6 8	22,3 22,5 24,0	484

Répartition des observations d'ECO par rapport aux sentiers de récolte après CPRS.

	Technique PMS		
	Herse	Scarificateur T26	
Nombre de points sur sentiers de machinerie après CPRS	130	303	
Moyenne de l'ECO (cm): points sur sentiers de machinerie après CPRS (p =0.03)	44,6	33,5	
Nombre de points hors sentiers de machinerie après CPRS	353	202	
Moyenne de l'ECO (cm): points hors sentiers de machinerie après CPRS (p =0.008)	44	36.6	
Total	483	505	

Degrés de perturbation des blocs

