A model of the post-fire recruitment of *Picea mariana* and *Pinus banksiana* as a function of salvage timing and intensity

T.B. Splawinski¹, D.F. Greene², D. Matthews²

¹Institute of Environmental Science, Université du Québec à Montréal, 141, avenue du Président-Kennedy, Montreal (Quebec) H2X 1Y4, Canada

²Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8 Canada
Fire and the Boreal forest
Fire and the Boreal forest

- Fire is the dominant disturbance in the boreal forest of North America

- Return time: 50 – 250 years
Fire and the Boreal forest

- Fire is the dominant disturbance in the boreal forest of North America
- Return time: 50 – 250 years
- Common species possess traits that facilitate persistence under this disturbance regime
Fire and the Boreal forest

- Fire is the dominant disturbance in the boreal forest of North America

- Return time: 50 – 250 years

- Common species possess traits that facilitate persistence under this disturbance regime

 Picea mariana (black spruce) (Semi serotinous)

 Pinus banksiana (jack pine) (Fully serotinous)

- Possess aerial seedbanks
Salvage

• The harvesting of charred trees following fire

• Recuperates economic losses associated with fire

• Intensive and extensive

• Typically applied in the first autumn and winter post-fire to avoid degradation due to wood-boring insects, stain fungi, wood-decay fungi, and checking
Negative effects
Negative effects

1. Poor conifer recruitment

2. Negative effects of removal of wood on dead-wood-dependent species
Negative effects

1. Poor conifer recruitment

2. Negative effects of removal of wood on dead-wood-dependent species

3. Changes in hydrologic regime

4. Altered soil characteristics

5. Road network expansion
Poor conifer regeneration in salvaged stands due to:
Poor conifer regeneration in salvaged stands due to:

1. Loss of first cohort due to salvage operations
Poor conifer regeneration in salvaged stands due to:

1. Loss of first cohort due to salvage operations

2. Removal of remaining aerial seedbanks
Poor conifer regeneration in salvaged stands due to:

1. Loss of first cohort due to salvage operations

2. Removal of remaining aerial seedbanks

• Potential shift to aspen dominated forest
Poor conifer regeneration in salvaged stands due to:

1. Loss of first cohort due to salvage operations

2. Removal of remaining aerial seedbanks
 • Potential shift to aspen dominated forest
 • Can lead to costly planting (~USD $1000/ha)
Poor conifer regeneration in salvaged stands due to:

1. Loss of first cohort due to salvage operations

2. Removal of remaining aerial seedbanks
 • Potential shift to aspen dominated forest
 • Can lead to costly planting (~USD $1000/ha)

• A seedling density of ~1/m² or greater considered adequate to fully re-stock stands (Greene et al. 2002)
Objectives
Objectives

1. Simulate the impact of fire and salvage timing and proportion on natural recruitment densities/m2 of *P. mariana* and *P. banksiana*.
Objectives

1. Simulate the impact of fire and salvage timing and proportion on natural recruitment densities/m2 of \textit{P. mariana} and \textit{P. banksiana}.

2. Test the model using data from three fires in the boreal forest of North America.
Objectives

1. Simulate the impact of fire and salvage timing and proportion on natural recruitment densities/m2 of *P. mariana* and *P. banksiana*.

2. Test the model using data from three fires in the boreal forest of North America.

3. Explore how the timing and proportion of salvage affects the subsequent recruitment density of each species.
Objectives

1. Simulate the impact of fire and salvage timing and proportion on natural recruitment densities/m\(^2\) of *P. mariana* and *P. banksiana*.

2. Test the model using data from three fires in the boreal forest of North America.

3. Explore how the timing and proportion of salvage affects the subsequent recruitment density of each species.

4. Model the effect of distributing salvaged seed.
General approach

• Developed using the modeling software STELLA

• Simulation period: 72 months (6 years)

P. mariana

P. banksiana
Fire month

Fire
Seeds Available

Fire month

Fire

Basal area

Seed mortality due to fire
Seeds Available

- Fire month
- Fire
- Basal area
- Seed mortality due to fire
- Salvage month
- Salvage proportion
- Salvage
Seeds Available

- Fire month
- Basal area
- Seed mortality due to fire
- Salvage month
- Salvage proportion

Seeds on ground

Salvage

Fire
Fire month

Fire

Seed abscission

Seeds Available

Salvage

Seeds on ground

Basal area

Seed mortality due to fire

Salvage month

Salvage proportion
Seeds Available

- Fire month
- Fire
- Seed abscission

Seeds on ground

- Seeds per seedbed
- Salvage
- Basal area
- Seed mortality due to fire
- Salvage month
- Salvage proportion
Seeds Available

Fire

Seed abscission

Seeds on ground

Seeds per seedbed

Salvage

Seedbed proportions

% Moss
% High porosity
% Mineral soil

Fire month

Basal area

Seed mortality due to fire

Salvage month

Salvage proportion
Seeds Available

Fire

Fire month

Seed abscession

Germination period

Granivory rate

Seed mass

Survivorship function

Seeds on ground

Seeds per seedbed

Seedling density

Salvage

Salvage month

Salvage proportion

Seedbed proportions

% Moss

% High porosity

% Mineral soil

Basal area

Seed mortality due to fire
Model validation

Lebel-sur-Quevillon fire

Observed vs simulated Lebel-sur-Quevillon *P. mariana* and *P. banksiana* recruit density (seedlings/m²) based on treatment

![Graph showing observed vs simulated recruit density](image-url)

- **BS Intact**
- **BS 50% salvaged Dec**
- **BS 100% salvaged Nov**
- **BS 100% salvaged Dec**
- **BS 100% salvaged Jan**
- **BS 100% salvaged Feb**
- **BS 100% salvaged Oct**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Observed density</th>
<th>Simulated density</th>
</tr>
</thead>
</table>
Val Paradis fire (Greene et al. 2006, 2004)

Observed vs simulated Val Paradis *P. mariana* and *P. banksiana* recruit density (seedlings/m2) based on treatment
P. mariana age structure Val Paradis (simulated vs observed)

![Graph showing age structure of P. mariana](image1)

P. banksiana age structure Val Paradis (simulated vs observed)

![Graph showing age structure of P. banksiana](image2)
Saskatchewan fire (Greene and Johnson 1999)

Observed vs simulated *P. mariana* recruit densities per m²

- **Seedling density/m² vs Basal area/area**

Observed vs simulated *P. banksiana* recruit densities per m²

- **Seedling density/m² vs Basal area/area**
The year of 100% winter salvage in which minimally full stocking can be obtained given the pre-fire basal area/area.

- **Salvage year P. mariana**
- **Salvage year P. banksiana**
Maximum salvage proportion per year for *P. mariana* to achieve 1 seedling/m² vs the pre-fire basal area/area

Salvage proportion

<table>
<thead>
<tr>
<th>Basal area/area</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum salvage proportion per year for *P. banksiana* to achieve 1 seedling/m² vs the pre-fire basal area/area

Salvage proportion

<table>
<thead>
<tr>
<th>Basal area/area</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P. mariana seedling densities vs year with distribution of salvaged seeds (75%) and 100% salvage

![Graph showing seedling densities vs year with distribution of salvaged seeds for P. mariana.](image)

P. banksiana seedling densities vs year with distribution of salvaged seeds (75%) and 100% salvage

![Graph showing seedling densities vs year with distribution of salvaged seeds for P. banksiana.](image)
Implications
Implications

- Jack pine relatively unaffected by salvage
Implications

• Jack pine relatively unaffected by salvage

• Planting almost always necessary following first winter salvage for black spruce
Implications

• Jack pine relatively unaffected by salvage

• Planting almost always necessary following first winter salvage for black spruce

• Distribution of salvaged seeds presents a promising alternative to planting, as does partial or delayed salvage
Problematic legislation
Problematic legislation

• Currently in Quebec salvaged trees must first be used to make saw-logs
Problematic legislation

• Currently in Quebec salvaged trees must first be used to make saw-logs

• Companies must therefore salvage first winter in order to avoid damage by various wood degradation agents
Problematic legislation

• Currently in Quebec salvaged trees must first be used to make saw-logs

• Companies must therefore salvage first winter in order to avoid damage by various wood degradation agents

• Wood affected by checking, stain fungi, and insect damage can still be used for pulp
Environment and Economy, a delicate balance

• Most pyrophilous insects and fire-associated woodpeckers are abundant for only 2-3 years following fire (St-Germain and Greene 2009)

We suggest:
Environment and Economy, a delicate balance

• Most pyrophilous insects and fire-associated woodpeckers are abundant for only 2-3 years following fire (St-Germain and Greene 2009)

We suggest:

1a. Delay salvage 2-3 years in stands where the majority of trees are not suitable for saw-logs, for pulp and paper

1b. Stands with large tree diameters should be salvaged first winter for saw-logs
Environment and Economy, a delicate balance

- Most pyrophilous insects and fire-associated woodpeckers are abundant for only 2-3 years following fire (St-Germain and Greene 2009)

We suggest:

1a. Delay salvage 2-3 years in stands where the majority of trees are not suitable for saw-logs, for pulp and paper

1b. Stands with large tree diameters should be salvaged first winter for saw-logs

2. Partial salvage first winter, leaving enough standing trees to satisfy natural regeneration needs, with the rest salvaged three years later
Environment and Economy, a delicate balance

• Most pyrophilous insects and fire-associated woodpeckers are abundant for only 2-3 years following fire (St-Germain and Greene 2009)

We suggest:

1a. Delay salvage 2-3 years in stands where the majority of trees are not suitable for saw-logs, for pulp and paper

1b. Stands with large tree diameters should be salvaged first winter for saw-logs

2. Partial salvage first winter, leaving enough standing trees to satisfy natural regeneration needs, with the rest salvaged three years later

3. Delay salvage until the second or third winter, to be used for pulp only. Satisfy saw-log demand using traditional harvest methods
Future research
Future research

• Directly compare the cost of artificial regeneration vs the cost in lost or devalued wood, given a salvage delay
Future research

• Directly compare the cost of artificial regeneration vs the cost in lost or devalued wood, given a salvage delay

• Further develop the model to include seed and cone abscission as a result of salvage operations
Future research

• Directly compare the cost of artificial regeneration vs the cost in lost or devalued wood, given a salvage delay

• Further develop the model to include seed and cone abscission as a result of salvage operations

• Translate model results onto forest inventory maps
Merci!