BoysCherryDayanandan2005

Référence

Boys, J., Cherry, M. and Dayanandan, S. (2005) Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae). American Journal of Botany, 92(5):833-841.

Résumé

Red pine (Pinus resinosa Ait.) is an ecologically and economically important forest tree species of northeastern North America and is considered one of the most genetically depauperate conifer species in the region. We have isolated and characterized 13 nuclear microsatellite loci by screening a partial genomic library with di-, tri-, and tetranucleotide repeat oligonucleotide probes. In an analysis of over 500 individuals representing 17 red pine populations from Manitoba through Newfoundland, five polymorphic microsatellite loci with an average of nine alleles per locus were identified. The mean expected and observed heterozygosity values were 0.508 and 0.185, respectively. Significant departures from Hardy-Weinberg equilibrium with excess homozygosity indicating high levels of inbreeding were evident in all populations studied. The population differentiation was high with 28-35% of genetic variation partitioned among populations. The genetic distance analysis showed that three northeastern (two Newfoundland and one New Brunswick) populations are genetically distinct from the remaining populations. The coalescence-based analysis suggests that "northeastern" and "main" populations likely became isolated during the most recent Pleistocene glacial period, and severe population bottlenecks may have led to the evolution of a highly selfing mating system in red pine.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { BoysCherryDayanandan2005,
    AUTHOR = { Boys, J. and Cherry, M. and Dayanandan, S. },
    TITLE = { Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae) },
    JOURNAL = { American Journal of Botany },
    YEAR = { 2005 },
    VOLUME = { 92 },
    PAGES = { 833-841 },
    NUMBER = { 5 },
    NOTE = { 00029122 (ISSN) Cited By (since 1996): 1 Export Date: 27 April 2007 Source: Scopus CODEN: AJBOA Language of Original Document: English Correspondence Address: Boys, J.; Ctr. for Struct. and Funct. Genomics; Biology Department; Concordia University; 7141 Sherbrooke Street West Montreal, Que. H4B 1R6, Canada References: Allendorf, F.W., Knudsen, K.L., Blake, G.M., Frequencies of null alleles at enzyme loci in natural populations of ponderosa and red pine (1982) Genetics, 100, pp. 497-504; Al-Rabab'ah, M.A., Williams, C.G., Population dynamics of Pinus taeda L. based on nuclear microsatellites (2002) Forest Ecology and Management, 163, pp. 263-271; Beerli, P., Felsenstein, J., Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach (2001) Proceedings of National Academy of Sciences, USA, 98, pp. 4563-4568; Be?rube?, Y., Ritland, C., Ritland, K., Isolation, characterization, and cross-species utility of microsatellites in yellow cedar (Chamaecyparis nootkatensis) (2003) Genome, 46, pp. 353-361; Bidlack, A.L., Cook, J., A nuclear perspective on endemism in northern flying squirrels (Glaucomys sabrinus) of the Alexander Archipelago, Alaska (2002) Conservation Genetics, 3, pp. 247-259; Bohonak, A.J., IBD (Isolation by Distance): A program for analyses of isolation by distance (2002) Journal of Heredity, 93, pp. 153-154; Charlesworth, B., Charlesworth, D., The evolutionary genetics of sexual systems in flowering plants (1979) Proceedings of the Royal Society, London, B, 205, pp. 513-530; Cherry, M., Options for allocating afforestation stock in Ontario with anticipated climate change (2001) Forest Research Paper No. 148, , Ontario Ministry of Natural Resources, Ontario Forest Research Institute; Crow, J.F., Kimura, M., (1970) An Introduction to Population Genetic Theory, , Harper and Row, New York, New York, USA; Dayanandan, S., Bawa, K.S., Kesseli, R., Conservation of microsatellites among tropical trees (Leguminosae) (1997) American Journal of Botany, 84, pp. 1658-1663; Dayanandan, S., Rajora, O.P., Bawa, K.S., Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides) (1998) Theoretical and Applied Genetics, 96, pp. 950-956; DeVerno, L.L., Mosseler, A., Genetic variation in red pine (Pinus resinosa) revealed by RAPD and RAPD-RFLP analysis (1997) Canadian Journal of Forest Research, 27, pp. 1316-1320; Echt, C.S., May-Marquardt, P., Hseih, M., Zahorchak, R., Characterization of microsatellite markers in eastern white pine (1996) Genome, 39, pp. 1102-1108; Echt, C.S., Deverno, L.L., Anzidei, M., Vendramin, G.G., Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait (1998) Molecular Ecology, 7, pp. 307-316; Feldheim, K.A., Gruber, S.H., Ashley, M.V., Population genetic structure of the lemon shark (Negaprion brevirostris) in the western Atlantic: DNA microsatellite variation (2001) Molecular Ecology, 10, pp. 295-303; Firestone, K.B., Houlden, B.A., Sherwin, W.B., Geffen, E., Variability and differentiation of microsatellites in the genus Dasyrus and conservation implications for the large Australian carnivorous marsupials (2000) Conservation Genetics, 1, pp. 115-133; Fischer, D., Bachmann, K., Microsatellite enrichment in organisms with large genomes (Allium cepa L.) (1998) Biotechniques, 24, pp. 796-798; Fisher, P.J., Richardson, T.E., Gardner, R.C., Characteristics of single- and multi-copy microsatellites from Pinus radiata (1998) Theoretical and Applied Genetics, 96, pp. 969-979; Fowler, D.P., Effects of inbreeding in red pine, Pinus resinosa Ait. I. Factors affecting natural selfing (1964) Silvae Genetica, 13, pp. 170-177; Fowler, D.P., Effects of inbreeding in red pine, Pinus resinosa Ait. II. Pollination studies (1965) Silvae Genetica, 14, pp. 12-23; Fowler, D.P., Lester, D.T., (1970) Genetics of Red Pine, , Research paper WO-8, USDA Forest Service, Washington, D.C; Fowler, D.P., Morris, R.W., Genetic diversity in red pine: Evidence for low genetic heterozygosity (1977) Canadian Journal of Forest Research, 7, pp. 343-347; Garner, T.W.J., Genome size and microsatellites: The effect of nuclear size on amplification potential (2002) Genome, 45, pp. 212-215; Glaubitz, J.C., El-Kassaby, Y.A., Carlson, J.E., Nuclear restriction fragment length polymorphism analysis of genetic diversity in western red cedar (2000) Canadian Journal of Forest Research, 30, pp. 379-389; Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L., Feldman, M.W., An evaluation of genetic distances for use with microsatellite loci (1995) Genetics, 139, pp. 463-471; Goodman, S.J., RST Calc: A collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance (1997) Molecular Ecology, 6, pp. 881-885; Gullberg, U., Yazani, R., Rudin, D., Ryman, N., Allozyme variation in Scots pine (Pinus sylvestris L.) in Sweden (1985) Silvae Genetica, 34, pp. 193-200; Hamrick, J.L., Godt, M.J.W., Allozyme diversity in plant species (1990) Plant Population Genetics, Breeding and Genetic Resources, pp. 43-63. , A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir [eds.], Sinauer, Sunderland, Massachusetts, USA; Hawley, G.J., De Hayes, D.H., Genetic diversity and population structure of red spruce (Picea rubens) (1994) Canadian Journal Botany, 72, pp. 1778-1786; Hewitt, G.M., Speciation, hybrid zones and phylogeography - Or seeing genes in space and time (2001) Molecular Ecology, 10, pp. 537-549; Jackson, S.T., Webb, R.S., Anderson, K.H., Overpeck, J.T., Webb III, T., Williams, J.W., Hansen, B.C.S., Vegetation and environment in Eastern North America during the last glacial maximum (2000) Quaternary Science Reviews, 19, pp. 489-508; Kostia, S., Varvio, S.-L., Vakkari, P., Pulkkinen, P., Microsatellite sequences in Pinus sylvestris (1995) Genome, 38, pp. 1244-1248; Lande, R., Schemske, D.W., The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models (1985) Evolution, 39, pp. 24-40; Ledig, F.T., Genetic variation in Pinus (1998) Ecology and Biogeography of Pinus, pp. 251-273. , D. M. Richardson [ed.], Cambridge University Press, Cambridge, UK; Ledig, F.T., Conkle, M.T., Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr) (1983) Evolution, 37, pp. 79-85; Lewis, P.O., Crawford, D.J., Pleistocene refugium endemics exhibit greater allozymic diversity than widespread congeners in the genus Polygonella (Polygonaceae) (1995) American Journal of Botany, 82, pp. 141-149; Lewis, P.O., Zaykin, D., (2001) Genetic Data Analysis: Computer Program for the Analysis of Allelic Data, Version 1.0 (D16c), , http://lewis.eeb.uconn.edu/lewishome/software.html; Loveless, M.D., Hamrick, J.L., Ecological determinants of genetic structure of plant populations (1984) Annual Review of Ecology and Systematics, 15, pp. 65-95; Mitton, J.B., Molecular approaches to population biology (1994) Annual Review of Ecology and Systematics, 25, pp. 45-69; Mosseler, A., Innes, D.J., Roberts, B.A., Lack of allozyme variation found in disjunct Newfoundland populations of red pine (Pinus resinosa) (1991) Canadian Journal of Forest Research, 21, pp. 525-528; Mosseler, A., Egger, K.N., Hughes, G.A., Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers (1992) Canadian Journal of Forest Research, 22, pp. 1332-1337; Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals (1978) Genetics, 147, pp. 1943-1957; Page, R.D.M., TREEVIEW: An application to display phylogenetic trees on personal computers (1996) Computer Applications in the Biosciences, 12, pp. 357-358; Pfeiffer, A., Olivier, A.M., Morgante, M., Identification and characterization of microsatellites in Norway spruce (Picea abies K.) (1997) Genome, 40, pp. 411-419; Pielou, E.C., (1991) After the Ice Age: The Return of Life to Glaciated North America, , University of Chicago Press, Chicago, Illinois, USA; Prasad, A.M., Iverson, L.R., (1999) A Climate Change Atlas for 80 Forest Tree Species of the Eastern United States, http://www.fs.fed.us/ne/delaware/atlas/index.html, Northeastern Research Station, USDA Forest Service, Delaware, Ohio, USA; Rajora, O.P., Rahman, M.H., Dayanandan, S., Mosseler, Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species (2001) Molecular General Genetics, 264, pp. 871-882; Raymond, M., Rousset, F., GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism (1995) Journal of Heredity, 86, pp. 248-249; Rousset, F., Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance (1997) Genetics, 145, pp. 1219-1228; Rousset, F., Raymond, M., Testing heterozygote excess and deficiency (1995) Genetics, 140, pp. 1413-1419; Rudolf, R.O., Pinus resinosa Ait., red pine (1990) USDA Forest Service Agriculture Handbook 654, 1, pp. 442-455. , R. M. Burns and B. H. Honkala [eds.], Silvics of North America, Conifers, Washington, D.C., USA; Schoen, D.J., Brown, A.H.D., Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants (1991) Proceedings of National Academy of Sciences, USA, 88, pp. 4494-4497; Simon, J.-P., Bergeron, Y., Gagnon, D., Isozyme uniformity in populations of red pine (Pinus resinosa) in the Abitibi region, Quebec (1986) Canadian Journal of Forest Research, 16, pp. 1133-1135; Slatkin, M., Isolation by distance in equilibrium and non-equilibrium populations (1993) Evolution, 47, pp. 264-279; Slatkin, M., A measure of population subdivision based on microsatellite allele frequencies (1995) Genetics, 139, pp. 457-462; Smith, D.N., Devey, M.E., Occurrence and inheritance of microsatellites in Pinus radiata (1994) Genome, 37, pp. 977-983; Soltis, D.E., Gitzendanner, M.A., Strenge, D.D., Soltis, P.S., Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America (1997) Plant Systematics and Evolution, 206, pp. 353-373; Soranzo, N., Provan, J., Powell, W., Characterization of microsatellite loci in Pinus sylvestris L. (1998) Molecular Ecology, 7, pp. 1247-1263; Stacy, E.A., Dayanandan, S., Dancik, B.P., Khasa, D.P., Microsatellite DNA markers for the Sri Lankan rainforest tree species, Shorea cordifolia (Dipterocapaceae), and cross-species amplification in S. megistophylla (2001) Molecular Ecology Notes, 1, pp. 53-54; Stebbins, G.L., Self-fertilization and population variability in higher plants (1957) American Naturalist, 91, pp. 337-354; Sun, G.L., Salomon, B., Microsatellite variability and heterozygote deficiency in the arctic-alpine Alaskan wheatgrass (Elymus alaskanus) complex (2003) Genome, 46, pp. 729-737; Thomas, B.R., Macdonald, S.E., Hicks, M., Adams, D.L., Hodgetts, R.B., Effects of reforestation methods on genetic diversity of lodgepole pine: An assessment using microsatellite and randomly amplified polymorphic DNA markers (1999) Theoretical and Applied Genetics, 98, pp. 793-801; Thuillet, A.C., Bru, D., David, J.L., Roumet, P., Santoni, S., Sourdille, P., Bataillon, T., Direct estimation of mutation rate for ten microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp. durum desf (2002) Molecular Biology and Evolution, 19, pp. 122-125; Udupa, S.M., Baum, M., High mutation rate and mutational bias at (TAA) (n) microsatellite loci in chickpea (Cicer arietinum L.) (2001) Molecular Genetics and Genomics, 265, pp. 1097-1103; Vigouroux, Y., Jaqueth, J.S., Matsuoka, Y., Smith, O.S., Beavis, W.D., Smith, J.S., Doebley, J., Rate and pattern of mutation at microsatellite loci in maize (2002) Molecular Biology and Evolution, 19, pp. 1251-1260; Vucetich, J.A., Waite, T.A., Spatial patterns of demography and genetic processes across the species' range: Null hypotheses for landscape conservation genetics (2003) Conservation Genetics, 4, pp. 639-645; Walter, R., Epperson, B.K., Geographic pattern of genetic variation in Pinus resinosa: Area of greatest diversity is not the origin of postglacial populations (2001) Molecular Ecology, 10, pp. 103-111; Walter, R., Epperson, B.K., Geographic pattern of genetic diversity in Pinus resinosa: Contact zone between descendants of glacial refugia (2005) American Journal of Botany, 92, pp. 92-100; Weber, J.L., Informativeness of human (dC-dA)n:(dG-dT)n polymorphisms (1990) Genomics, 7, pp. 524-530; Weir, B.S., Cockerham, C.C., Estimating F-statistics for the analysis of population structure (1984) Evolution, 38, pp. 1358-1370; Williams, C.G., Salvolainen, O., Inbreeding depression in conifers: Implications for breeding strategy (1996) Forest Science, 42, pp. 102-117; Wright, S., The interpretation of population structure by F-statistics with special regard to systems of mating (1965) Evolution, 19, pp. 395-420. },
    ABSTRACT = { Red pine (Pinus resinosa Ait.) is an ecologically and economically important forest tree species of northeastern North America and is considered one of the most genetically depauperate conifer species in the region. We have isolated and characterized 13 nuclear microsatellite loci by screening a partial genomic library with di-, tri-, and tetranucleotide repeat oligonucleotide probes. In an analysis of over 500 individuals representing 17 red pine populations from Manitoba through Newfoundland, five polymorphic microsatellite loci with an average of nine alleles per locus were identified. The mean expected and observed heterozygosity values were 0.508 and 0.185, respectively. Significant departures from Hardy-Weinberg equilibrium with excess homozygosity indicating high levels of inbreeding were evident in all populations studied. The population differentiation was high with 28-35% of genetic variation partitioned among populations. The genetic distance analysis showed that three northeastern (two Newfoundland and one New Brunswick) populations are genetically distinct from the remaining populations. The coalescence-based analysis suggests that "northeastern" and "main" populations likely became isolated during the most recent Pleistocene glacial period, and severe population bottlenecks may have led to the evolution of a highly selfing mating system in red pine. },
    KEYWORDS = { Genetic bottleneck Genetic diversity Microsatellites Pinus Pleistocene refugia Population genetics Postglacial colonization genetic differentiation glaciation population bottleneck population genetics North America Western Hemisphere World Coniferophyta Pinaceae Pinus resinosa },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...