RavagliaBacFournier2017

Référence

Ravaglia, J., Bac, A. and Fournier, R.A. (2017) Extraction of tubular shapes from dense point clouds and application to tree reconstruction from laser scanned data. Computers & Graphics, 66:23-33. (Scopus )

Résumé

We propose a novel method for detecting and reconstructing tubular shapes in dense, noisy, occluded and unorganized point clouds. The STEP method (Snakes for Tuboid Extraction from Point clouds) was originally designed to reconstruct woody parts of trees scanned with terrestrial LiDAR in natural forest environments. The STEP method deals with the acquisition artefacts of point clouds from terrestrial LiDAR which include three important constraints: a varying sampling rate, signal occlusion, and the presence of noise. The STEP method uses a combination of an original Hough transform and a new form of growing active contours (also referred to as “snakes”�) to overcome these constraints while being able to handle large data sets. The framework proves to be resilient under various conditions as a general shape recognition and reconstruction tool. In the field of forestry, the method was demonstrated to be robust to the previously highlighted limitations (with errors in the range of manual forest measurements, that is 1 cm diameter error). The STEP method has therefore the potential to improve current forest inventories as well as being applied to a wide array of other applications, such as pipeline reconstruction and the assessment of industrial structures. © 2017 Elsevier Ltd

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { RavagliaBacFournier2017,
    AUTHOR = { Ravaglia, J. and Bac, A. and Fournier, R.A. },
    TITLE = { Extraction of tubular shapes from dense point clouds and application to tree reconstruction from laser scanned data },
    JOURNAL = { Computers & Graphics },
    YEAR = { 2017 },
    VOLUME = { 66 },
    PAGES = { 23-33 },
    NOTE = { cited By 1 },
    ABSTRACT = { We propose a novel method for detecting and reconstructing tubular shapes in dense, noisy, occluded and unorganized point clouds. The STEP method (Snakes for Tuboid Extraction from Point clouds) was originally designed to reconstruct woody parts of trees scanned with terrestrial LiDAR in natural forest environments. The STEP method deals with the acquisition artefacts of point clouds from terrestrial LiDAR which include three important constraints: a varying sampling rate, signal occlusion, and the presence of noise. The STEP method uses a combination of an original Hough transform and a new form of growing active contours (also referred to as “snakes”�) to overcome these constraints while being able to handle large data sets. The framework proves to be resilient under various conditions as a general shape recognition and reconstruction tool. In the field of forestry, the method was demonstrated to be robust to the previously highlighted limitations (with errors in the range of manual forest measurements, that is 1 cm diameter error). The STEP method has therefore the potential to improve current forest inventories as well as being applied to a wide array of other applications, such as pipeline reconstruction and the assessment of industrial structures. © 2017 Elsevier Ltd },
    AFFILIATION = { Aix-Marseille Université, laboratoire des sciences de l'information et des systèmes (LSIS), UMR CNRS, France; Centre d'applications et de recherches en télédétection (CARTEL), Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, QC, Canada },
    AUTHOR_KEYWORDS = { Active contours; Hough transform; Point cloud; Shape reconstruction; Tubular shape },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.cag.2017.05.016 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020410887&doi=10.1016%2fj.cag.2017.05.016&partnerID=40&md5=d5df31f9e8e48233c76fc0ea5758f6d2 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...