BlanchetteFournierLutherEtAl2015

Référence

Blanchette, D., Fournier, R.A., Luther, J.E., Cote, J.-F. (2015) Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species. Forest Ecology and Management, 347:116-129. (Scopus )

Résumé

Knowledge of wood fiber attributes (WFA) is important for evaluating forest resources and optimizing efficiency in the forest industry. To improve our ability to estimate WFA in the forest, we analyzed the relationships between structural metrics derived from terrestrial laser scanner (TLS) data and four key attributes of industrial significance: wood density, fiber length, microfibril angle, and coarseness. We developed a suite of structural metrics that relate to four aspects of the forest: canopy structure, competition, vegetation density, and local topography. We modeled WFA for sites dominated by black spruce (Picea mariana) and balsam fir (Abies balsamea) trees. For black spruce sites, R2 values ranged from 63% to 72%. Structural metrics that relate to competition were the strongest explanatory variables. For balsam fir sites, R2 ranged from 37% to 63% using structural metrics that relate mostly to canopy structure. Our results demonstrate that local structural variables are useful explanatory variables for predicting WFA of the dominant coniferous species in Newfoundland. © 2015.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { BlanchetteFournierLutherEtAl2015,
    AUTHOR = { Blanchette, D. and Fournier, R.A. and Luther, J.E. and Cote, J.-F. },
    TITLE = { Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species },
    JOURNAL = { Forest Ecology and Management },
    YEAR = { 2015 },
    VOLUME = { 347 },
    PAGES = { 116-129 },
    NOTE = { cited By 0 },
    ABSTRACT = { Knowledge of wood fiber attributes (WFA) is important for evaluating forest resources and optimizing efficiency in the forest industry. To improve our ability to estimate WFA in the forest, we analyzed the relationships between structural metrics derived from terrestrial laser scanner (TLS) data and four key attributes of industrial significance: wood density, fiber length, microfibril angle, and coarseness. We developed a suite of structural metrics that relate to four aspects of the forest: canopy structure, competition, vegetation density, and local topography. We modeled WFA for sites dominated by black spruce (Picea mariana) and balsam fir (Abies balsamea) trees. For black spruce sites, R2 values ranged from 63% to 72%. Structural metrics that relate to competition were the strongest explanatory variables. For balsam fir sites, R2 ranged from 37% to 63% using structural metrics that relate mostly to canopy structure. Our results demonstrate that local structural variables are useful explanatory variables for predicting WFA of the dominant coniferous species in Newfoundland. © 2015. },
    AUTHOR_KEYWORDS = { AIC; Forestry; Modeling; Multimodel inference; Terrestrial LiDAR; Wood fiber attributes },
    CODEN = { FECMD },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.foreco.2015.03.013 },
    ISSN = { 03781127 },
    KEYWORDS = { Fibers; Forestry; Models; Optical radar; Surveying instruments; Wood products, AIC; Balsam fir (Abies balsamea); Black spruce (Picea mariana); Explanatory variables; Multi-model inference; Terrestrial laser scanners; Terrestrial lidars; Wood fiber, Wood, Abies balsamea; Coniferophyta; Picea mariana },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-84925691450&partnerID=40&md5=e4dd48b70d94e61f7557993b0b99b902 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...