BalducciFierravantiRossiEtAl2020

Reference

Balducci, L., Fierravanti, A., Rossi, S., Delzon, S., De Grandpre, L., Kneeshaw, D.D., Deslauriers, A. (2020) The paradox of defoliation: Declining tree water status with increasing soil water content. Agricultural and Forest Meteorology, 290:108025. (URL )

Abstract

Defoliation can enhance tree water status by reducing canopy transpiration under drought. During long-lasting insect outbreaks however, this effect can be transient as reduced foliage affects not only transpiration but also the entire soil-plant-atmosphere continuum. In this study, we investigated the effects of defoliation and vapor pressure deficit (VPD) on plant and soil water status in balsam fir and black spruce defoliated by spruce budworm, Choristoneura fumiferana (Clemens). We sampled 48 fir trees and 36 spruce trees subjected to differing severities of defoliation. In May–September 2014 and 2015, we monitored the relative shoot water content (RWC) and soil volumetric water content (VWC), and midday shoot water potential (Ψmd, only in 2015). We applied linear mixed models (LMMs) to assess changes in RWC, Ψmd, and VWC to defoliation and VPD and we ran structural equation models (SEM) to determine the causal relationships between the measured variables in relation to defoliation and VPD. In LMMs models, defoliation and VPD, as individual factors, reduced Ψmd in both balsam fir and pooled species models but did not affect RWC. Defoliation alone increased VWC in balsam fir and in pooled models. We observed no interaction between VPD and defoliation on tree water status, but significant effect on VWC (in balsam fir and pooled models), indicating that both factors had independent and additive effects on plants but not on soil. However, in SEM models, RWC was negatively correlated to defoliation, suggesting a hydraulic safety margin. Under conditions of multiple-years of natural defoliation during a spruce budworm outbreak, the decrease in Ψmd reflects the amount of internal water capacitance that could be caused by both a lower Ψmd due to larval feeding and a negative feedback between defoliation and xylem vulnerability.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { BalducciFierravantiRossiEtAl2020,
    AUTHOR = { Balducci, L. and Fierravanti, A. and Rossi, S. and Delzon, S. and De Grandpre, L. and Kneeshaw, D.D. and Deslauriers, A. },
    TITLE = { The paradox of defoliation: Declining tree water status with increasing soil water content },
    JOURNAL = { Agricultural and Forest Meteorology },
    YEAR = { 2020 },
    VOLUME = { 290 },
    PAGES = { 108025 },
    ISSN = { 0168-1923 },
    ABSTRACT = { Defoliation can enhance tree water status by reducing canopy transpiration under drought. During long-lasting insect outbreaks however, this effect can be transient as reduced foliage affects not only transpiration but also the entire soil-plant-atmosphere continuum. In this study, we investigated the effects of defoliation and vapor pressure deficit (VPD) on plant and soil water status in balsam fir and black spruce defoliated by spruce budworm, Choristoneura fumiferana (Clemens). We sampled 48 fir trees and 36 spruce trees subjected to differing severities of defoliation. In May–September 2014 and 2015, we monitored the relative shoot water content (RWC) and soil volumetric water content (VWC), and midday shoot water potential (Ψmd, only in 2015). We applied linear mixed models (LMMs) to assess changes in RWC, Ψmd, and VWC to defoliation and VPD and we ran structural equation models (SEM) to determine the causal relationships between the measured variables in relation to defoliation and VPD. In LMMs models, defoliation and VPD, as individual factors, reduced Ψmd in both balsam fir and pooled species models but did not affect RWC. Defoliation alone increased VWC in balsam fir and in pooled models. We observed no interaction between VPD and defoliation on tree water status, but significant effect on VWC (in balsam fir and pooled models), indicating that both factors had independent and additive effects on plants but not on soil. However, in SEM models, RWC was negatively correlated to defoliation, suggesting a hydraulic safety margin. Under conditions of multiple-years of natural defoliation during a spruce budworm outbreak, the decrease in Ψmd reflects the amount of internal water capacitance that could be caused by both a lower Ψmd due to larval feeding and a negative feedback between defoliation and xylem vulnerability. },
    DOI = { https://doi.org/10.1016/j.agrformet.2020.108025 },
    KEYWORDS = { Relative water content, Water potential, Soil moisture, Defoliation, Vapor pressure deficit, Picea mariana, Abies balsamea, Spruce budworm },
    OWNER = { Daniel Lesieur },
    TIMESTAMP = { 2020-06-11 },
    URL = { http://www.sciencedirect.com/science/article/pii/S0168192320301271 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...