MarchandComitaWrightEtAl2020

Reference

Marchand, P., Comita, L.S., Wright, S.J., Condit, R., Hubbell, S.P., Beckman, N.G. (2020) Seed-to-seedling transitions exhibit distance-dependent mortality but no strong spacing effects in a Neotropical forest. Ecology, 101(2). (Scopus )

Abstract

Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance-dependent mortality in the seed-to-seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival-distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50-ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree-census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance-dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance-dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species. © 2019 by the Ecological Society of America

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { MarchandComitaWrightEtAl2020,
    AUTHOR = { Marchand, P. and Comita, L.S. and Wright, S.J. and Condit, R. and Hubbell, S.P. and Beckman, N.G. },
    JOURNAL = { Ecology },
    TITLE = { Seed-to-seedling transitions exhibit distance-dependent mortality but no strong spacing effects in a Neotropical forest },
    YEAR = { 2020 },
    NOTE = { cited By 0 },
    NUMBER = { 2 },
    VOLUME = { 101 },
    ABSTRACT = { Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance-dependent mortality in the seed-to-seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival-distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50-ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree-census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance-dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance-dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species. © 2019 by the Ecological Society of America },
    AFFILIATION = { Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada; School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, United States; Smithsonian Tropical Research Institute, Panama City, 0843-03092, Panama; Field Museum of Natural History, Chicago, IL 60605, United States; Morton Arboretum, Lisle, IL 60532, United States; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States; Department of Biology and Ecology Center, Utah State University, Logan, UT 84322, United States },
    ART_NUMBER = { e02926 },
    AUTHOR_KEYWORDS = { dispersal kernel; Janzen–Connell hypothesis; seed dispersal; seedling establishment; species coexistence; tropical forest },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1002/ecy.2926 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076749009&doi=10.1002%2fecy.2926&partnerID=40&md5=9d058ca5eed073d0c1fb1af657e7d77b },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...