RousselCaspersenBelandEtAl2017

Reference

Roussel, J.-R., Caspersen, J., Beland, M., Thomas, S., Achim, A. (2017) Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size. Remote Sensing of Environment, 198:1 - 16. (URL )

Abstract

Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three dimensional point clouds. However, the structure of point clouds depends not only on stand structure, but also on the LiDAR instrument, its settings, and the pattern of flight. The resulting variation between and within datasets (particularly variation in pulse density and footprint size) can induce spurious variation in LiDAR metrics such as maximum height (hmax) and mean height of the canopy surface model (Cmean). In this study, we first compare two LiDAR datasets acquired with different parameters, and observe that hmax and Cmean are 56 cm and 1.0 m higher, respectively, when calculated using the high-density dataset with a small footprint. Then, we present a model that explains the observed bias using probability theory, and allows us to recompute the metrics as if the density of pulses were infinite and the size of the two footprints were equivalent. The model is our first step in developing methods for correcting various LiDAR metrics that are used for area-based prediction of stand structure. Such methods may be particularly useful for monitoring forest growth over time, given that acquisition parameters often change between inventories.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { RousselCaspersenBelandEtAl2017,
    AUTHOR = { Roussel, J.-R. and Caspersen, J. and Beland, M. and Thomas, S. and Achim, A. },
    TITLE = { Removing bias from LiDAR-based estimates of canopy height: Accounting for the effects of pulse density and footprint size },
    JOURNAL = { Remote Sensing of Environment },
    YEAR = { 2017 },
    VOLUME = { 198 },
    PAGES = { 1 - 16 },
    ABSTRACT = { Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three dimensional point clouds. However, the structure of point clouds depends not only on stand structure, but also on the LiDAR instrument, its settings, and the pattern of flight. The resulting variation between and within datasets (particularly variation in pulse density and footprint size) can induce spurious variation in LiDAR metrics such as maximum height (hmax) and mean height of the canopy surface model (Cmean). In this study, we first compare two LiDAR datasets acquired with different parameters, and observe that hmax and Cmean are 56 cm and 1.0 m higher, respectively, when calculated using the high-density dataset with a small footprint. Then, we present a model that explains the observed bias using probability theory, and allows us to recompute the metrics as if the density of pulses were infinite and the size of the two footprints were equivalent. The model is our first step in developing methods for correcting various LiDAR metrics that are used for area-based prediction of stand structure. Such methods may be particularly useful for monitoring forest growth over time, given that acquisition parameters often change between inventories. },
    DOI = { http://dx.doi.org/10.1016/j.rse.2017.05.032 },
    ISSN = { 0034-4257 },
    KEYWORDS = { LiDAR },
    OWNER = { nafon9 },
    TIMESTAMP = { 2017.08.24 },
    URL = { http://www.sciencedirect.com/science/article/pii/S0034425717302316 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...