IrulappaPillaiVijayakumarRaulierBernierEtAl2017

Reference

Irulappa Pillai Vijayakumar, D.B., Raulier, F., Bernier, P.Y., Gauthier, S., Bergeron, Y., Pothier, D. (2017) Fire disturbance data improves the accuracy of remotely sensed estimates of aboveground biomass for boreal forests in eastern Canada. Remote Sensing Applications: Society and Environment, 8:71 - 82. (URL )

Abstract

Accurate estimation of aboveground biomass (AGB) using remote sensing data is still challenging and an approach based on an understanding of forest disturbance and succession could help improve AGB estimation. In the boreal forest of North America, time since last fire (TSLF) is seen as a useful variable to explain post-fire successional change and aboveground biomass (AGB). Within a large study area (>200 000km2) located in the northeastern American boreal forest, we compared remotely sensed biomass estimates of MODIS (Moderate Resolution Imaging Spectroradiometer), GLAS (Geoscience Laser Altimeter System) and ASAR (Advanced Synthetic Aperture Radar) with inventory-based estimates derived from ground plots, and forest maps at a spatial resolution of 2-km2. We identified that TSLF could explain the error observed in remotely sensed AGB estimates (MODIS (45%), GLAS (47%) or ASAR (23%)) when associated with surficial geological substrate information at that scale. Our results therefore show the importance of TSLF as a potential ancillary variable for improving the accuracy of remotely sensed AGB estimates in North American boreal forests.

EndNote Format

You can import this reference in EndNote.

BibTeX-CSV Format

You can import this reference in BibTeX-CSV format.

BibTeX Format

You can copy the BibTeX entry of this reference below, orimport it directly in a software like JabRef .

@ARTICLE { IrulappaPillaiVijayakumarRaulierBernierEtAl2017,
    AUTHOR = { Irulappa Pillai Vijayakumar, D.B. and Raulier, F. and Bernier, P.Y. and Gauthier, S. and Bergeron, Y. and Pothier, D. },
    TITLE = { Fire disturbance data improves the accuracy of remotely sensed estimates of aboveground biomass for boreal forests in eastern Canada },
    JOURNAL = { Remote Sensing Applications: Society and Environment },
    YEAR = { 2017 },
    VOLUME = { 8 },
    PAGES = { 71 - 82 },
    ISSN = { 2352-9385 },
    ABSTRACT = { Accurate estimation of aboveground biomass (AGB) using remote sensing data is still challenging and an approach based on an understanding of forest disturbance and succession could help improve AGB estimation. In the boreal forest of North America, time since last fire (TSLF) is seen as a useful variable to explain post-fire successional change and aboveground biomass (AGB). Within a large study area (>200 000km2) located in the northeastern American boreal forest, we compared remotely sensed biomass estimates of MODIS (Moderate Resolution Imaging Spectroradiometer), GLAS (Geoscience Laser Altimeter System) and ASAR (Advanced Synthetic Aperture Radar) with inventory-based estimates derived from ground plots, and forest maps at a spatial resolution of 2-km2. We identified that TSLF could explain the error observed in remotely sensed AGB estimates (MODIS (45%), GLAS (47%) or ASAR (23%)) when associated with surficial geological substrate information at that scale. Our results therefore show the importance of TSLF as a potential ancillary variable for improving the accuracy of remotely sensed AGB estimates in North American boreal forests. },
    DOI = { https://doi.org/10.1016/j.rsase.2017.07.010 },
    KEYWORDS = { Aboveground biomass, Boreal forests, Remote sensing, Successional dynamics, MODIS, GLAS, ASAR },
    URL = { http://www.sciencedirect.com/science/article/pii/S2352938517301209 },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...