MigliavaccaGalvagnoCremoneseEtAl2011

Référence

Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O., Cogliati, S., Manca, G., Diotri, F., Busetto, L., Cescatti, A., Colombo, R., Fava, F., Morra di Cella, U., Pari, E., Siniscalco, C., Richardson, A.D. (2011) Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agricultural and Forest Meteorology, 151(10):1325-1337. (Scopus )

Résumé

The continuous and automated monitoring of canopy phenology is of increasing scientific interest for the multiple implications of vegetation dynamics on ecosystem carbon and energy fluxes. For this purpose we evaluated the applicability of digital camera imagery for monitoring and modeling phenology and physiology of a subalpine grassland over the 2009 and 2010 growing seasons.We tested the relationships between color indices (i.e. the algebraic combinations of RGB brightness levels) tracking canopy greenness extracted from repeated digital images against field measurements of green and total biomass, leaf area index (LAI), greenness visual estimation, vegetation indices computed from continuous spectroradiometric measurements and CO2 fluxes observed with the eddy covariance technique. A strong relationship was found between canopy greenness and (i) structural parameters (i.e., LAI) and (ii) canopy photosynthesis (i.e. Gross Primary Production; GPP). Color indices were also well correlated with vegetation indices typically used for monitoring landscape phenology from satellite, suggesting that digital repeat photography provides high-quality ground data for evaluation of satellite phenology products.We demonstrate that by using canopy greenness we can refine phenological models (Growing Season Index, GSI) by describing canopy development and considering the role of ecological factors (e.g., snow, temperature and photoperiod) controlling grassland phenology. Moreover, we show that canopy greenness combined with radiation use efficiency (RUE) obtained from spectral indices related to photochemistry (i.e., scaled Photochemical Reflectance Index) or meteorology (i.e., MOD17 RUE) can be used to predict daily GPP.Building on previous work that has demonstrated that seasonal variation in the structure and function of plant canopies can be quantified using digital camera imagery, we have highlighted the potential use of these data for the development and parameterization of phenological and RUE models, and thus point toward an extension of the proposed methodologies to the dataset collected within PhenoCam Network. © 2011 Elsevier B.V.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { MigliavaccaGalvagnoCremoneseEtAl2011,
    AUTHOR = { Migliavacca, M. and Galvagno, M. and Cremonese, E. and Rossini, M. and Meroni, M. and Sonnentag, O. and Cogliati, S. and Manca, G. and Diotri, F. and Busetto, L. and Cescatti, A. and Colombo, R. and Fava, F. and Morra di Cella, U. and Pari, E. and Siniscalco, C. and Richardson, A.D. },
    TITLE = { Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake },
    JOURNAL = { Agricultural and Forest Meteorology },
    YEAR = { 2011 },
    VOLUME = { 151 },
    NUMBER = { 10 },
    PAGES = { 1325-1337 },
    NOTE = { cited By 87 },
    ABSTRACT = { The continuous and automated monitoring of canopy phenology is of increasing scientific interest for the multiple implications of vegetation dynamics on ecosystem carbon and energy fluxes. For this purpose we evaluated the applicability of digital camera imagery for monitoring and modeling phenology and physiology of a subalpine grassland over the 2009 and 2010 growing seasons.We tested the relationships between color indices (i.e. the algebraic combinations of RGB brightness levels) tracking canopy greenness extracted from repeated digital images against field measurements of green and total biomass, leaf area index (LAI), greenness visual estimation, vegetation indices computed from continuous spectroradiometric measurements and CO2 fluxes observed with the eddy covariance technique. A strong relationship was found between canopy greenness and (i) structural parameters (i.e., LAI) and (ii) canopy photosynthesis (i.e. Gross Primary Production; GPP). Color indices were also well correlated with vegetation indices typically used for monitoring landscape phenology from satellite, suggesting that digital repeat photography provides high-quality ground data for evaluation of satellite phenology products.We demonstrate that by using canopy greenness we can refine phenological models (Growing Season Index, GSI) by describing canopy development and considering the role of ecological factors (e.g., snow, temperature and photoperiod) controlling grassland phenology. Moreover, we show that canopy greenness combined with radiation use efficiency (RUE) obtained from spectral indices related to photochemistry (i.e., scaled Photochemical Reflectance Index) or meteorology (i.e., MOD17 RUE) can be used to predict daily GPP.Building on previous work that has demonstrated that seasonal variation in the structure and function of plant canopies can be quantified using digital camera imagery, we have highlighted the potential use of these data for the development and parameterization of phenological and RUE models, and thus point toward an extension of the proposed methodologies to the dataset collected within PhenoCam Network. © 2011 Elsevier B.V. },
    AFFILIATION = { European Commission, DG-JRC, Institute for Environment and Sustainability, Climate Change and Air Quality Unit, Via Fermi 2749, 21027 Ispra, Italy; Remote Sensing of Environmental Dynamics Laboratory, Disat, Università degli Studi Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; Agenzia Regionale per la Protezione dell'Ambiente della Valle d'Aosta, Sez. Agenti Fisici, Aosta, Italy; European Commission, DG-JRC, Institute for Environment and Sustainability, Monitoring Agricultural Resources Unit, Via Fermi 2749, 21027 Ispra, Italy; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States; Institute for Atmospheric Pollution, Consiglio Nazionale delle Ricerche, 87036 Rende, Italy; Desertification Research Group (NRD), Università degli Studi di Sassari, Viale Italia 57, 07100 Sassari, Italy; Plant Biology Department, Università degli Studi di Torino, Viale Pier Andrea Mattioli 25, 10125 Torino, Italy },
    AUTHOR_KEYWORDS = { Color indices; Digital repeat photography; Gross primary production; Growing Season Index; Phenology; Subalpine grasslands },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.agrformet.2011.05.012 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960838186&doi=10.1016%2fj.agrformet.2011.05.012&partnerID=40&md5=3114a99692632b9578c7e7bcfa68a30e },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - ABC CBA 2020 ****************** **********************************************************

31 mai au 4 juin 2020

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...