LorantyAbbottBlokEtAl2018

Référence

Loranty, M.M., Abbott, B.W., Blok, D., Douglas, T.A., Epstein, H.E., Forbes, B.C., Jones, B.M., Kholodov, A.L., Kropp, H., Malhotra, A., Mamet, S.D., Myers-Smith, I.H., Natali, S.M., O'Donnell, J.A., Phoenix, G.K., Rocha, A.V., Sonnentag, O., Tape, K.D. and Walker, D.A. (2018) Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences, 15(17):5287-5313. (Scopus )

Résumé

Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost-climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time. © Author(s) 2018.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { LorantyAbbottBlokEtAl2018,
    AUTHOR = { Loranty, M.M. and Abbott, B.W. and Blok, D. and Douglas, T.A. and Epstein, H.E. and Forbes, B.C. and Jones, B.M. and Kholodov, A.L. and Kropp, H. and Malhotra, A. and Mamet, S.D. and Myers-Smith, I.H. and Natali, S.M. and O'Donnell, J.A. and Phoenix, G.K. and Rocha, A.V. and Sonnentag, O. and Tape, K.D. and Walker, D.A. },
    TITLE = { Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions },
    JOURNAL = { Biogeosciences },
    YEAR = { 2018 },
    VOLUME = { 15 },
    NUMBER = { 17 },
    PAGES = { 5287-5313 },
    NOTE = { cited By 0 },
    ABSTRACT = { Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost-climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time. © Author(s) 2018. },
    AFFILIATION = { Department of Geography, Colgate University, Hamilton, NY 13346, United States; Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, United States; Department of Physical Geography and Ecosystem Science, Lund University, Lund, 223 62, Sweden; U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99703, United States; Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, United States; Arctic Centre, University of Lapland, Rovaniemi, 96101, Finland; Institute of Northern Engineering, Water and Environmental Research Center, University of Alaska, Fairbanks, AK 99775, United States; Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, United States; Environmental Sciences Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, 37831-6301, United States; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom; Woods Hole Research Center, Falmouth, MA 02540, United States; Arctic Network, National Park Service, Anchorage, AK 99501, United States; Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Biological Sciences and the Environmental Change Initiative, University of Notre Dame, Notre Dame, 46556, United States; Département de Géographie, Université de Montréal, Montréal, H2V 2B8, Canada; Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, United States },
    DOCUMENT_TYPE = { Review },
    DOI = { 10.5194/bg-15-5287-2018 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052808781&doi=10.5194%2fbg-15-5287-2018&partnerID=40&md5=4b60bef744b7eb1b0b5bd57becfdd5a5 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...