RousselBelandCaspersenEtAl2018

Référence

Roussel, J.-R., Beland, M., Caspersen, J., Achim, A. (2018) A mathematical framework to describe the effect of beam incidence angle on metrics derived from airborne LiDAR: The case of forest canopies approaching turbid medium behaviour. Remote Sensing of Environment, 209:824-834. (Scopus )

Résumé

Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three-dimensional point clouds. However, the 3D distribution of the point clouds depends not only on stand structure, but also on scan angle, because the probability for an oblique beam to be reflected by the canopy increases with the distance it must travel through the canopy. Thus, the canopy appears to increase in density as the incidence angle increases, all else being equal. The resulting variation between and within datasets can induce bias in LiDAR metrics derived from the vertical distribution of points. In this study, we modelled the effect of scan angle on the vertical structure of the point clouds to predict the bias of metrics derived from points sampled off-nadir. Comparison with paired observations from different flightlines (off- and at-nadir observations of the same point) demonstrated that the model accurately reproduced the bias of metrics calculated for a northern hardwood forest with relatively continuous canopy. Thus, the model could be used to correct the bias of LiDAR metrics, and provides a mathematical framework that could be used to inform the selection of maximum incidence angle in LiDAR surveys, considering the trade-off between decreasing acquisition costs and obtaining unbiased measurements. © 2017 Elsevier Inc.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { RousselBelandCaspersenEtAl2018,
    AUTHOR = { Roussel, J.-R. and Beland, M. and Caspersen, J. and Achim, A. },
    TITLE = { A mathematical framework to describe the effect of beam incidence angle on metrics derived from airborne LiDAR: The case of forest canopies approaching turbid medium behaviour },
    JOURNAL = { Remote Sensing of Environment },
    YEAR = { 2018 },
    VOLUME = { 209 },
    PAGES = { 824-834 },
    NOTE = { cited By 2 },
    ABSTRACT = { Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three-dimensional point clouds. However, the 3D distribution of the point clouds depends not only on stand structure, but also on scan angle, because the probability for an oblique beam to be reflected by the canopy increases with the distance it must travel through the canopy. Thus, the canopy appears to increase in density as the incidence angle increases, all else being equal. The resulting variation between and within datasets can induce bias in LiDAR metrics derived from the vertical distribution of points. In this study, we modelled the effect of scan angle on the vertical structure of the point clouds to predict the bias of metrics derived from points sampled off-nadir. Comparison with paired observations from different flightlines (off- and at-nadir observations of the same point) demonstrated that the model accurately reproduced the bias of metrics calculated for a northern hardwood forest with relatively continuous canopy. Thus, the model could be used to correct the bias of LiDAR metrics, and provides a mathematical framework that could be used to inform the selection of maximum incidence angle in LiDAR surveys, considering the trade-off between decreasing acquisition costs and obtaining unbiased measurements. © 2017 Elsevier Inc. },
    AFFILIATION = { Centre de recherche sur les matériaux renouvelables, Département des sciences du bois et de la forêt, Pavillon Gene-H.-Kruger, 2425 rue de la Terrasse, Université Laval, Québec, QC G1V 0A6, Canada; Département des sciences géomatiques, Pavillon Louis-Jacques-Casault, 1055, avenue du Séminaire, Université Laval, Québec, G1V 0A6, Canada; Faculty of Forestry, University of Toronto, Toronto, Canada },
    AUTHOR_KEYWORDS = { Canopy structure; Forest; LiDAR; LiDAR parametrization; Resource monitoring; Scan angle },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.rse.2017.12.006 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042559679&doi=10.1016%2fj.rse.2017.12.006&partnerID=40&md5=247fc65a198605abb4da891a760a4b4a },
}

********************************************************** *************************** FRQNT ************************ **********************************************************

Un regroupement stratégique du

********************************************************** *********************** Infolettre *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Congrès Mycelium ****************** **********************************************************

Reporté en 2021

********************************************************** ***************** Pub - IWTT ****************** **********************************************************

Reporté en 2021

**********************************************************

***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...