VellendDornelasBaetenEtAl2017

Référence

Vellend, M., Dornelas, M., Baeten, L., Beausejour, R., Brown, C.D., De Frenne, P., Elmendorf, S.C., Gotelli, N.J., Moyes, F., Myers-Smith, I.H., Magurran, A.E., McGill, B.J., Shimadzu, H. and Sievers, C. (2017) Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 98(2):583-590. (Scopus )

Résumé

We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation. © 2016 by the Ecological Society of America.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { VellendDornelasBaetenEtAl2017,
    AUTHOR = { Vellend, M. and Dornelas, M. and Baeten, L. and Beausejour, R. and Brown, C.D. and De Frenne, P. and Elmendorf, S.C. and Gotelli, N.J. and Moyes, F. and Myers-Smith, I.H. and Magurran, A.E. and McGill, B.J. and Shimadzu, H. and Sievers, C. },
    TITLE = { Estimates of local biodiversity change over time stand up to scrutiny },
    JOURNAL = { Ecology },
    YEAR = { 2017 },
    VOLUME = { 98 },
    NUMBER = { 2 },
    PAGES = { 583-590 },
    NOTE = { cited By 5 },
    ABSTRACT = { We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation. © 2016 by the Ecological Society of America. },
    AFFILIATION = { Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, Canada; Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom; Department of Forest and Water Management, Forest and Nature Lab, Ghent University, Melle-Gontrode, Belgium; Department of Geography, Memorial University, St. John's, NL, Canada; Department of Plant Production, Ghent University, Proefhoevestraat 22, Melle, Belgium; National Ecological Observatory Network, Boulder, CO, United States; Department of Biology, University of Vermont, Burlington, VT, United States; School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom; School of Biology and Ecology, Sustainability Solutions Initiative, University of Maine, Orono, MI, United States; Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom },
    AUTHOR_KEYWORDS = { Biodiversity; Disturbance; Geographic bias; Meta-analysis; Species richness; Temporal change; Time series },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1002/ecy.1660 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010378825&doi=10.1002%2fecy.1660&partnerID=40&md5=52d4f2058ff4cbd17c53ff0c4ae4533c },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...