PreveyVellendRugerEtAl2017

Référence

Prevey, J., Vellend, M., Ruger, N., Hollister, R.D., Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Clark, K., Cooper, E.J., Elberling, B., Fosaa, A.M., Henry, G.H.R., Hoye, T.T., Jonsdottir, I.S., Klanderud, K., Levesque, E., Mauritz, M., Molau, U., Natali, S.M., Oberbauer, S.F., Panchen, Z.A., Post, E., Rumpf, S.B., Schmidt, N.M., Schuur, E.A.G., Semenchuk, P.R., Troxler, T., Welker, J.M. and Rixen, C. (2017) Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 23(7):2660-2671. (Scopus )

Résumé

Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms. © 2017 John Wiley & Sons Ltd

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { PreveyVellendRugerEtAl2017,
    AUTHOR = { Prevey, J. and Vellend, M. and Ruger, N. and Hollister, R.D. and Bjorkman, A.D. and Myers-Smith, I.H. and Elmendorf, S.C. and Clark, K. and Cooper, E.J. and Elberling, B. and Fosaa, A.M. and Henry, G.H.R. and Hoye, T.T. and Jonsdottir, I.S. and Klanderud, K. and Levesque, E. and Mauritz, M. and Molau, U. and Natali, S.M. and Oberbauer, S.F. and Panchen, Z.A. and Post, E. and Rumpf, S.B. and Schmidt, N.M. and Schuur, E.A.G. and Semenchuk, P.R. and Troxler, T. and Welker, J.M. and Rixen, C. },
    TITLE = { Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes },
    JOURNAL = { Global Change Biology },
    YEAR = { 2017 },
    VOLUME = { 23 },
    NUMBER = { 7 },
    PAGES = { 2660-2671 },
    NOTE = { cited By 1 },
    ABSTRACT = { Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms. © 2017 John Wiley & Sons Ltd },
    AFFILIATION = { WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland; USDA-Forest Service, Pacific Northwest Research Station, Olympia, WA, United States; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada; German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany; Smithsonian Tropical Research Institute, Balboa Ancón, Panama; Biology Department, Grand Valley State University, Allendale, MI, United States; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; National Ecological Observatory Network, Boulder, CO, United States; Environment and Natural Resources, Government of the Northwest TerritoriesNT, Canada; Institute for Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Faroese Museum of Natural History, Hoyvík, Faroe Islands; Department of Geography and Biodiversity Research Institute, University of British Columbia, Vancouver, BC, Canada; Arctic Research Center, Department of Bioscience, Aarhus University, Aarhus, Denmark; The University Centre in Svalbard, Longyearbyen, Norway; Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland; Department of Ecology and Natural Resources, Norwegian University of Life Sciences, NO-1432, Ås, Norway; Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Center for Ecosystem Science and Society Center, Northern Arizona University, Flagstaff, AZ, United States; Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Woods Hole Research Center, Falmouth, MA, United States; Department of Biological Sciences, Florida International University, Miami, FL, United States; Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, United States; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria; Department of Biological Sciences, University of Alaska, Anchorage, AK, United States },
    AUTHOR_KEYWORDS = { Arctic; Cassiope tetragona; climate change; climatic gradient; flowering; International Tundra Experiment; latitude; tundra },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1111/gcb.13619 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85012068022&doi=10.1111%2fgcb.13619&partnerID=40&md5=e7d31167ff3248d15f69456c1e1207c2 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...