FahrigArroyo-RodriguezBennettEtAl2019

Référence

Fahrig, L., Arroyo-Rodriguez, V., Bennett, J.R., Boucher-Lalonde, V., Cazetta, E., Currie, D.J., Eigenbrod, F., Ford, A.T., Harrison, S.P., Jaeger, J.A.G., Koper, N., Martin, A.E., Martin, J.-L., Metzger, J.P., Morrison, P., Rhodes, J.R., Saunders, D.A., Simberloff, D., Smith, A.C., Tischendorf, L., Vellend, M. and Watling, J.I. (2019) Is habitat fragmentation bad for biodiversity? Biological Conservation, 230:179-186. (Scopus )

Résumé

In a review of landscape-scale empirical studies, Fahrig (2017a) found that ecological responses to habitat fragmentation per se (fragmentation independent of habitat amount) were usually non-significant (>70% of responses) and that 76% of significant relationships were positive, with species abundance, occurrence, richness, and other response variables increasing with habitat fragmentation per se. Fahrig concluded that to date there is no empirical evidence supporting the widespread assumption that a group of small habitat patches generally has lower ecological value than large patches of the same total area. Fletcher et al. (2018) dispute this conclusion, arguing that the literature to date indicates generally negative ecological effects of habitat fragmentation per se. They base their argument largely on extrapolation from patch-scale patterns and mechanisms (effects of patch size and isolation, and edge effects) to landscape-scale effects of habitat fragmentation. We argue that such extrapolation is unreliable because: (1) it ignores other mechanisms, especially those acting at landscape scales (e.g., increased habitat diversity, spreading of risk, landscape complementation) that can counteract effects of the documented patch-scale mechanisms; and (2) extrapolation of a small-scale mechanism to a large-scale pattern is not evidence of that pattern but, rather a prediction that must be tested at the larger scale. Such tests were the subject of Fahrig's review. We find no support for Fletcher et al.'s claim that biases in Fahrig's review would alter its conclusions. We encourage further landscape-scale empirical studies of effects of habitat fragmentation per se, and research aimed at uncovering the mechanisms that underlie positive fragmentation effects. © 2018

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { FahrigArroyo-RodriguezBennettEtAl2019,
    AUTHOR = { Fahrig, L. and Arroyo-Rodriguez, V. and Bennett, J.R. and Boucher-Lalonde, V. and Cazetta, E. and Currie, D.J. and Eigenbrod, F. and Ford, A.T. and Harrison, S.P. and Jaeger, J.A.G. and Koper, N. and Martin, A.E. and Martin, J.-L. and Metzger, J.P. and Morrison, P. and Rhodes, J.R. and Saunders, D.A. and Simberloff, D. and Smith, A.C. and Tischendorf, L. and Vellend, M. and Watling, J.I. },
    TITLE = { Is habitat fragmentation bad for biodiversity? },
    JOURNAL = { Biological Conservation },
    YEAR = { 2019 },
    VOLUME = { 230 },
    PAGES = { 179-186 },
    NOTE = { cited By 0 },
    ABSTRACT = { In a review of landscape-scale empirical studies, Fahrig (2017a) found that ecological responses to habitat fragmentation per se (fragmentation independent of habitat amount) were usually non-significant (>70% of responses) and that 76% of significant relationships were positive, with species abundance, occurrence, richness, and other response variables increasing with habitat fragmentation per se. Fahrig concluded that to date there is no empirical evidence supporting the widespread assumption that a group of small habitat patches generally has lower ecological value than large patches of the same total area. Fletcher et al. (2018) dispute this conclusion, arguing that the literature to date indicates generally negative ecological effects of habitat fragmentation per se. They base their argument largely on extrapolation from patch-scale patterns and mechanisms (effects of patch size and isolation, and edge effects) to landscape-scale effects of habitat fragmentation. We argue that such extrapolation is unreliable because: (1) it ignores other mechanisms, especially those acting at landscape scales (e.g., increased habitat diversity, spreading of risk, landscape complementation) that can counteract effects of the documented patch-scale mechanisms; and (2) extrapolation of a small-scale mechanism to a large-scale pattern is not evidence of that pattern but, rather a prediction that must be tested at the larger scale. Such tests were the subject of Fahrig's review. We find no support for Fletcher et al.'s claim that biases in Fahrig's review would alter its conclusions. We encourage further landscape-scale empirical studies of effects of habitat fragmentation per se, and research aimed at uncovering the mechanisms that underlie positive fragmentation effects. © 2018 },
    AFFILIATION = { Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 4B6, Canada; Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán 58190, Mexico; Département de biologie, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, (Québec) J1K 2R1, Canada; Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, BA CEP 45662-900, Brazil; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; Geography and Environment, University of Southampton, Room 2078, Shackleton Building (B44), Highfield Campus, Southampton, SO17 1BJ, United Kingdom; Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada; Environmental Science and Policy, Wickson Hall, University of California, Davis, United States; Concordia University Montreal, Department of Geography, Planning and Environment, 1455 de Maisonneuve Blvd. West, Suite 1255, Montréal, QC H3G 1M8, Canada; Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, Canada; Centre d'Écologie Fonctionnelle et Évolutive UMR 5175, CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHE - IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France; Dept. of Ecology, Institute of Bioscience, University of Sao Paulo, rua do Matao, 321, trv. 14, Sao Paulo, SP 05508-090, Brazil; The University of Queensland, School of Earth and Environmental Sciences, Brisbane, QLD 4072, Australia; CSIRO Land & Water, Canberra, ACT, Australia; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, United States; Canadian Wildlife Service, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada; ELUTIS Modelling and Consulting Inc., 681 Melbourne Ave., Ottawa, ON K2A 1X4, Canada; Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada; John Carroll University, 1 John Carroll Boulevard, University HeightsOH 44118, United States },
    AUTHOR_KEYWORDS = { Corridors; Cross-scale extrapolation; Edge effect; Habitat diversity; Habitat fragmentation per se; Habitat loss; Landscape configuration; Landscape heterogeneity; Patch isolation; Patch size; SLOSS; Spatial scale },
    DOCUMENT_TYPE = { Short Survey },
    DOI = { 10.1016/j.biocon.2018.12.026 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059237016&doi=10.1016%2fj.biocon.2018.12.026&partnerID=40&md5=8013c72274586c302e47879e1f658e9d },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...