Naujokaitis-Lewis2013287

Référence

Naujokaitis-Lewis, I.R., Rico, Y., Lovell, J., Fortin, M.-J. and Murphy, M.A. (2013) Implications of incomplete networks on estimation of landscape genetic connectivity. Conservation Genetics, 14(2):287-298. (Scopus )

Résumé

Understanding processes and landscape features governing connectivity among individuals and populations is fundamental to many ecological, evolutionary, and conservation questions. Network analyses based on graph theory are emerging as a prominent approach to quantify patterns of connectivity with more recent applications in landscape genetics aimed at understanding the influence of landscape features on gene flow. Despite the strong conceptual framework of graph theory, the effect of incomplete networks resulting from missing nodes (i. e. populations) and their genetic connectivity network interactions on landscape genetic inferences remains unknown. We tested the violation of this assumption by subsampling from a known complete network of breeding ponds of the Columbia Spotted Frog (Rana luteiventris) in the Bighorn Crags (Idaho, USA). Variation in the proportion of missing nodes strongly influenced node-level centrality indices, whereas indices describing network-level properties were more robust. Overall incomplete networks combined with network algorithm types used to link nodes appears to be critical to the rank-order sensitivity of centrality indices and to the Mantel-based inferences made regarding the role of landscape features on gene flow. Our findings stress the importance of sampling effort and topological network structure as they both affect the estimation of genetic connectivity. Given that failing to account for uncertainty on network outcomes can lead to quantitatively different conclusions, we recommend the routine application of sensitivity analyses to network inputs and assumptions. © 2012 Springer Science+Business Media B.V.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { Naujokaitis-Lewis2013287,
    AUTHOR = { Naujokaitis-Lewis, I.R. and Rico, Y. and Lovell, J. and Fortin, M.-J. and Murphy, M.A. },
    TITLE = { Implications of incomplete networks on estimation of landscape genetic connectivity },
    JOURNAL = { Conservation Genetics },
    YEAR = { 2013 },
    VOLUME = { 14 },
    NUMBER = { 2 },
    PAGES = { 287-298 },
    NOTE = { cited By 12 },
    ABSTRACT = { Understanding processes and landscape features governing connectivity among individuals and populations is fundamental to many ecological, evolutionary, and conservation questions. Network analyses based on graph theory are emerging as a prominent approach to quantify patterns of connectivity with more recent applications in landscape genetics aimed at understanding the influence of landscape features on gene flow. Despite the strong conceptual framework of graph theory, the effect of incomplete networks resulting from missing nodes (i. e. populations) and their genetic connectivity network interactions on landscape genetic inferences remains unknown. We tested the violation of this assumption by subsampling from a known complete network of breeding ponds of the Columbia Spotted Frog (Rana luteiventris) in the Bighorn Crags (Idaho, USA). Variation in the proportion of missing nodes strongly influenced node-level centrality indices, whereas indices describing network-level properties were more robust. Overall incomplete networks combined with network algorithm types used to link nodes appears to be critical to the rank-order sensitivity of centrality indices and to the Mantel-based inferences made regarding the role of landscape features on gene flow. Our findings stress the importance of sampling effort and topological network structure as they both affect the estimation of genetic connectivity. Given that failing to account for uncertainty on network outcomes can lead to quantitatively different conclusions, we recommend the routine application of sensitivity analyses to network inputs and assumptions. © 2012 Springer Science+Business Media B.V. },
    AFFILIATION = { Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada; Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523-1177, United States; Ecosystem Science and Management, University of Wyoming, 1000 E University Ave., Laramie, WY, 82071, United States },
    AUTHOR_KEYWORDS = { Landscape genetics; Network indices; Network theory; Sampling issue; Uncertainty },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1007/s10592-012-0385-3 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875719365&doi=10.1007%2fs10592-012-0385-3&partnerID=40&md5=1dcf4bf36921b4f4afd8a7d7502e66e0 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...