Dale2009188

Référence

Dale, M.R.T. and Fortin, M.-J. (2009) Spatial autocorrelation and statistical tests: Some solutions. Journal of Agricultural, Biological, and Environmental Statistics, 14(2):188-206. (Scopus )

Résumé

Spatial dependence or spatial autocorrelation often occurs in ecological data and can be a serious problem in analysis, affecting the significance rates of statistical tests, making them too liberal when the dependence is positive. Ecological phenomena often are patchy and give data with a wave structure, producing autocorrelation that cycles between positive and negative with increasing distance, further complicating the situation. This article describes the essentials of dealing with this problem as commonly encountered in analyzing ecological data for two variables.We investigated two related approaches to correcting statistical tests for data with spatial autocorrelation from onedimensional sampling schemes like the transects used in plant ecology, the example of interest here. Both approaches estimate the 'effective sample size' based on the observed autocorrelation structures of the variables. We examined tests of correlation and bivariate goodness-of-fit tests, as well as extensions beyond both of these test classes. The correction methods prove to be robust for a wide range of spatial autocorrelation structures in one-dimensional data and provide reliable corrections in most cases. They fail only when the data have strong and consistent waves that cause persistent cycles in the autocorrelation as a function of distance. By examining the spatial autocorrelation structure of the ecological data, we can predict the likelihood of successful correction for these bivariate tests. © 2009 American Statistical Association and the International Biometric Society.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { Dale2009188,
    AUTHOR = { Dale, M.R.T. and Fortin, M.-J. },
    TITLE = { Spatial autocorrelation and statistical tests: Some solutions },
    JOURNAL = { Journal of Agricultural, Biological, and Environmental Statistics },
    YEAR = { 2009 },
    VOLUME = { 14 },
    NUMBER = { 2 },
    PAGES = { 188-206 },
    NOTE = { cited By 39 },
    ABSTRACT = { Spatial dependence or spatial autocorrelation often occurs in ecological data and can be a serious problem in analysis, affecting the significance rates of statistical tests, making them too liberal when the dependence is positive. Ecological phenomena often are patchy and give data with a wave structure, producing autocorrelation that cycles between positive and negative with increasing distance, further complicating the situation. This article describes the essentials of dealing with this problem as commonly encountered in analyzing ecological data for two variables.We investigated two related approaches to correcting statistical tests for data with spatial autocorrelation from onedimensional sampling schemes like the transects used in plant ecology, the example of interest here. Both approaches estimate the 'effective sample size' based on the observed autocorrelation structures of the variables. We examined tests of correlation and bivariate goodness-of-fit tests, as well as extensions beyond both of these test classes. The correction methods prove to be robust for a wide range of spatial autocorrelation structures in one-dimensional data and provide reliable corrections in most cases. They fail only when the data have strong and consistent waves that cause persistent cycles in the autocorrelation as a function of distance. By examining the spatial autocorrelation structure of the ecological data, we can predict the likelihood of successful correction for these bivariate tests. © 2009 American Statistical Association and the International Biometric Society. },
    AFFILIATION = { University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada },
    AUTHOR_KEYWORDS = { Bivariate test; Correlation; Ecological data; Goodness of fit; T -test },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1198/jabes.2009.0012 },
    SOURCE = { Scopus },
    URL = { https://www.scopus.com/inward/record.uri?eid=2-s2.0-73649101891&doi=10.1198%2fjabes.2009.0012&partnerID=40&md5=3eb07ac02eecd8854f20683e9497d685 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...