Mazerolle2006a

Référence

Mazerolle, M.J. (2006) Improving data analysis in herpetology: Using Akaike's information criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia, 27(2):169-180. (Scopus )

Résumé

In ecology, researchers frequently use observational studies to explain a given pattern, such as the number of individuals in a habitat patch, with a large number of explanatory (i.e., independent) variables. To elucidate such relationships, ecologists have long relied on hypothesis testing to include or exclude variables in regression models, although the conclusions often depend on the approach used (e.g., forward, backward, stepwise selection). Though better tools have surfaced in the mid 1970's, they are still underutilized in certain fields, particularly in herpetology. This is the case of the Akaike information criterion (AIC) which is remarkably superior in model selection (i.e., variable selection) than hypothesis-based approaches. It is simple to compute and easy to understand, but more importantly, for a given data set, it provides a measure of the strength of evidence for each model that represents a plausible biological hypothesis relative to the entire set of models considered. Using this approach, one can then compute a weighted average of the estimate and standard error for any given variable of interest across all the models considered. This procedure, termed model-averaging or multimodel inference, yields precise and robust estimates. In this paper, I illustrate the use of the AIC in model selection and inference, as well as the interpretation of results analysed in this framework with two real herpetological data sets. The AIC and measures derived from it is should be routinely adopted by herpetologists. © Koninklijke Brill NV 2006.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { Mazerolle2006a,
    AUTHOR = { Mazerolle, M.J. },
    TITLE = { Improving data analysis in herpetology: Using Akaike's information criterion (AIC) to assess the strength of biological hypotheses },
    JOURNAL = { Amphibia-Reptilia },
    YEAR = { 2006 },
    VOLUME = { 27 },
    PAGES = { 169-180 },
    NUMBER = { 2 },
    NOTE = { cited By 130 },
    ABSTRACT = { In ecology, researchers frequently use observational studies to explain a given pattern, such as the number of individuals in a habitat patch, with a large number of explanatory (i.e., independent) variables. To elucidate such relationships, ecologists have long relied on hypothesis testing to include or exclude variables in regression models, although the conclusions often depend on the approach used (e.g., forward, backward, stepwise selection). Though better tools have surfaced in the mid 1970's, they are still underutilized in certain fields, particularly in herpetology. This is the case of the Akaike information criterion (AIC) which is remarkably superior in model selection (i.e., variable selection) than hypothesis-based approaches. It is simple to compute and easy to understand, but more importantly, for a given data set, it provides a measure of the strength of evidence for each model that represents a plausible biological hypothesis relative to the entire set of models considered. Using this approach, one can then compute a weighted average of the estimate and standard error for any given variable of interest across all the models considered. This procedure, termed model-averaging or multimodel inference, yields precise and robust estimates. In this paper, I illustrate the use of the AIC in model selection and inference, as well as the interpretation of results analysed in this framework with two real herpetological data sets. The AIC and measures derived from it is should be routinely adopted by herpetologists. © Koninklijke Brill NV 2006. },
    AUTHOR_KEYWORDS = { Data analysis; Estimation; Hypothesis testing; Model averaging; Regression; Significance; Stepwise; Variable selection },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1163/156853806777239922 },
    KEYWORDS = { Akaike information criterion; herpetofauna; hypothesis testing; numerical model; regression analysis },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-33746589181&partnerID=40&md5=83b14470f4a20d8748f68e587f3725eb },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...