ParrottKokLacroix1996

Référence

Parrott, L., Kok, R. and Lacroix, R. (1996) Daily average temperatures: Modeling and generation with a Fourier transform approach. Transactions of the ASAE, 39(5):1911-1922.

Résumé

A mathematical model has been developed To generate daily average temperatures (DATs) on a yearly basis for any climate. The model contains a complete description of the patterns and variations in the DATs for a given location using a set of 29 descriptor values, the magnitudes of which are determined using a Fourier frequency analysis of physical weather data. The model was tuned to imitate the climates at three Canadian sites - Montreal, Winnipeg, and Vancouver Daily average temperatures were then synthesized for all three locations and these were compared with the physical weather data from which the descriptor values had been derived. A number of evaluation methods were used to assess the effectiveness of the model in reproducing realistic DAT values. First, the model's ability to imitate patterns in the physical data was judged by comparing the distributions and statistics of the DATs at three granularities daily, weekly, and monthly. Second, variability in the data sets was compared by considering the pattern in the differences between consecutive daily average temperatures. Thirdly, a number of characterization measures, such as the heat units for a given crop (e.g., degree-days for corn), were calculated. Lastly, a set of DAT values from Halifax was used to tune the model, and its ability to predict temperature patterns for that climate was assessed. Overall, the model effectively captured the essence of real temperature patterns. Synthetic DATs were similar to the physical data for all three sites studied, at all three granularities. They also showed similar day-to-day variation. Values of the characterization measures were also comparable. The model is conceptually simple, and allows for the rapid generation of unlimited temperature data representative of a given climate. Furthermore, the model descriptors have physical meaning so that it is easy to compose a purely hypothetical climate and synthesize data. The Fourier approach proved to be a practical method of analyzing and reproducing temperature data, and should be widely applicable to the modeling of other natural phenomena as well.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { ParrottKokLacroix1996,
    AUTHOR = { Parrott, L. and Kok, R. and Lacroix, R. },
    TITLE = { Daily average temperatures: Modeling and generation with a Fourier transform approach },
    JOURNAL = { Transactions of the ASAE },
    YEAR = { 1996 },
    VOLUME = { 39 },
    PAGES = { 1911-1922 },
    NUMBER = { 5 },
    NOTE = { Vq591 Times Cited:2 Cited References Count:12 },
    ABSTRACT = { A mathematical model has been developed To generate daily average temperatures (DATs) on a yearly basis for any climate. The model contains a complete description of the patterns and variations in the DATs for a given location using a set of 29 descriptor values, the magnitudes of which are determined using a Fourier frequency analysis of physical weather data. The model was tuned to imitate the climates at three Canadian sites - Montreal, Winnipeg, and Vancouver Daily average temperatures were then synthesized for all three locations and these were compared with the physical weather data from which the descriptor values had been derived. A number of evaluation methods were used to assess the effectiveness of the model in reproducing realistic DAT values. First, the model's ability to imitate patterns in the physical data was judged by comparing the distributions and statistics of the DATs at three granularities daily, weekly, and monthly. Second, variability in the data sets was compared by considering the pattern in the differences between consecutive daily average temperatures. Thirdly, a number of characterization measures, such as the heat units for a given crop (e.g., degree-days for corn), were calculated. Lastly, a set of DAT values from Halifax was used to tune the model, and its ability to predict temperature patterns for that climate was assessed. Overall, the model effectively captured the essence of real temperature patterns. Synthetic DATs were similar to the physical data for all three sites studied, at all three granularities. They also showed similar day-to-day variation. Values of the characterization measures were also comparable. The model is conceptually simple, and allows for the rapid generation of unlimited temperature data representative of a given climate. Furthermore, the model descriptors have physical meaning so that it is easy to compose a purely hypothetical climate and synthesize data. The Fourier approach proved to be a practical method of analyzing and reproducing temperature data, and should be widely applicable to the modeling of other natural phenomena as well. },
    KEYWORDS = { weather model temperature model fourier transform neural-network solar },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...