CoteParrott2006

Référence

Cote, P., Parrott, L. (2006) Controlling food web structure by optimization of a community assembly model. Ecological Informatics, 1(2):125-131.

Résumé

In community assembly models, species are introduced from a pool of species according to a random sequence of invasion. The present work describes a new approach based on genetic algorithms (GA) which generates non-random sequences in order to maximize the diversity of the community. The GA must also meet the constraint that the food web of the community constructed in this fashion have a specified connectance. We show that the optimized sequences produce communities with a higher diversity than those generated from random assembly sequences. in addition, the GA is able to generate sequences that produce food webs from identical regional species pools that have different expected connectances. The results demonstrate the effectiveness of genetic algorithms for optimizing parameters in ecological models. (c) 2006 Elsevier B.V. All rights reserved.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { CoteParrott2006,
    AUTHOR = { Cote, P. and Parrott, L. },
    TITLE = { Controlling food web structure by optimization of a community assembly model },
    JOURNAL = { Ecological Informatics },
    YEAR = { 2006 },
    VOLUME = { 1 },
    PAGES = { 125-131 },
    NUMBER = { 2 },
    NOTE = { 145VP Times Cited:0 Cited References Count:24 },
    ABSTRACT = { In community assembly models, species are introduced from a pool of species according to a random sequence of invasion. The present work describes a new approach based on genetic algorithms (GA) which generates non-random sequences in order to maximize the diversity of the community. The GA must also meet the constraint that the food web of the community constructed in this fashion have a specified connectance. We show that the optimized sequences produce communities with a higher diversity than those generated from random assembly sequences. in addition, the GA is able to generate sequences that produce food webs from identical regional species pools that have different expected connectances. The results demonstrate the effectiveness of genetic algorithms for optimizing parameters in ecological models. (c) 2006 Elsevier B.V. All rights reserved. },
    KEYWORDS = { assembly models food webs community assembly genetic algorithms lotka-volterra dynamics ecological communities size },
    OWNER = { brugerolles },
    TIMESTAMP = { 2007.12.05 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ***************** Pub - Mycorhizes_2019 ****************** **********************************************************

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...