MitchellLanquaye-OpokuModzelewskiEtAl2008

Référence

Mitchell, S.J., Lanquaye-Opoku, N., Modzelewski, H., Shen, Y., Stull, R., Jackson, P., Murphy, B. and Ruel, J.-C. (2008) Comparison of wind speeds obtained using numerical weather prediction models and topographic exposure indices for predicting windthrow in mountainous terrain. Forest Ecology and Management, 254(2):193-204. (Scopus )

Résumé

Windthrow prediction models require data concerning stand characteristics and wind exposure. Geographic information system databases typically contain elevation, forest cover, and logging history layers, therefore attributes can be extracted for points distributed across a given landscape. Climate stations in forested areas are rare, but the wind regime at regularly spaced points can be estimated using mesoscale numerical weather prediction models such as MC2, MM5, and RAMS. More traditionally, wind exposure is estimated using topographic exposure indices. Using gridded and cutblock edge segment databases for areas of mountainous terrain in central British Columbia (McGregor) and on southwestern Vancouver Island (WIT), we examined the spatial variability of simulated wind speeds and topographic exposure indices, simple correlations between variables, and the utility of these variables in predicting clearcut edge windthrow. Approximately half of the spatial variability in topographic and wind variables occurred for points spaced within 4 km. After restricting the dataset to one point from every 16 km2 panel, mean wind speed was found to be correlated with elevation (0.48, 0.86), but less well with topographic exposure indices (0.17-0.72). Correlations between local winds predicted during strong wind events and topographic exposure indices varied depending on the model used, ranging from non-significant to moderate (0.58). Concordance values for logistic regression models for predicting cutblock edge windthrow improved from 65.0 and 63.8 for base models with height and stand variables, to 70.2 and 68.2 with the addition of topographic exposure indices and extreme wind measures, for McGregor and WIT, respectively. © 2007 Elsevier B.V. All rights reserved.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { MitchellLanquaye-OpokuModzelewskiEtAl2008,
    AUTHOR = { Mitchell, S.J. and Lanquaye-Opoku, N. and Modzelewski, H. and Shen, Y. and Stull, R. and Jackson, P. and Murphy, B. and Ruel, J.-C. },
    TITLE = { Comparison of wind speeds obtained using numerical weather prediction models and topographic exposure indices for predicting windthrow in mountainous terrain },
    JOURNAL = { Forest Ecology and Management },
    YEAR = { 2008 },
    VOLUME = { 254 },
    PAGES = { 193-204 },
    NUMBER = { 2 },
    ABSTRACT = { Windthrow prediction models require data concerning stand characteristics and wind exposure. Geographic information system databases typically contain elevation, forest cover, and logging history layers, therefore attributes can be extracted for points distributed across a given landscape. Climate stations in forested areas are rare, but the wind regime at regularly spaced points can be estimated using mesoscale numerical weather prediction models such as MC2, MM5, and RAMS. More traditionally, wind exposure is estimated using topographic exposure indices. Using gridded and cutblock edge segment databases for areas of mountainous terrain in central British Columbia (McGregor) and on southwestern Vancouver Island (WIT), we examined the spatial variability of simulated wind speeds and topographic exposure indices, simple correlations between variables, and the utility of these variables in predicting clearcut edge windthrow. Approximately half of the spatial variability in topographic and wind variables occurred for points spaced within 4 km. After restricting the dataset to one point from every 16 km2 panel, mean wind speed was found to be correlated with elevation (0.48, 0.86), but less well with topographic exposure indices (0.17-0.72). Correlations between local winds predicted during strong wind events and topographic exposure indices varied depending on the model used, ranging from non-significant to moderate (0.58). Concordance values for logistic regression models for predicting cutblock edge windthrow improved from 65.0 and 63.8 for base models with height and stand variables, to 70.2 and 68.2 with the addition of topographic exposure indices and extreme wind measures, for McGregor and WIT, respectively. © 2007 Elsevier B.V. All rights reserved. },
    COMMENT = { Export Date: 29 January 2008 Source: Scopus CODEN: FECMD doi: 10.1016/j.foreco.2007.07.037 },
    ISSN = { 03781127 (ISSN) },
    KEYWORDS = { Numerical weather prediction, Topographic exposure indices, Windthrow },
    OWNER = { Luc },
    TIMESTAMP = { 2008.01.29 },
    URL = { http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-37549035924&partnerID=40&rel=R7.0.0 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

********************************************************** ***************** Pub - Symphonies_Boreales ****************** **********************************************************

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...