ShawBonaKurzEtAl2015

Référence

Shaw, C.H., Bona, K.A., Kurz, W.A. and Fyles, J.W. (2015) The importance of tree species and soil taxonomy to modeling forest soil carbon stocks in Canada. Geoderma Regional, 4:114-125. (Scopus )

Résumé

Accurate initialization of soil and dead organic matter carbon (C) stocks in forest ecosystem models is challenging but critical to forest C estimation, assessing current and future responses to climate change, and evaluation of management options for climate change mitigation strategies. We identified opportunities to improve the accuracy of soil C estimates from the Carbon Budget of the Canadian Forest Sector (CBM-CFS3) - a model of forest C dynamics used to support greenhouse gas emission reporting. Accuracy of soil C stocks estimated by models is very dependent on the initialization process. Here, we used redundancy analysis (RDA) and ordinations in an exploratory analysis to compare the variance structures of soil C estimates determined by model variables used in the initialization process, in two different soil C datasets; one derived from the model, the other obtained from 2391 ground plots. We also used the ground plot data to determine if soil taxonomy (information currently not used in the CBM-CFS3) could be used to explain variation in addition to that already accounted for by variables in the model. Total variance of the plot C dataset was about twice as large as the variance of the model C dataset confirming that currently the model does not represent all factors that control variation in soil C stocks. Soil C stocks in the mineral soil were highly correlated with C stocks in soil organic horizons in the model dataset but not in the plot dataset, suggesting that the variables included in our assessment controlling C stocks in the mineral soil horizons are different than in the organic soil horizons. Tree productivity (maximum yield curve volume per hectare) explained a much larger proportion of the total variation in the model dataset than in the plot dataset, whereas the leading tree species explained more variation in the plot dataset than in the model, suggesting that accuracy of initialization of soil C stocks could be improved by including leading tree species to stratify soil C modeling parameters. Leading species that are in greatest need of improved representation were identified by ordination. The results from the RDA showed that soil taxonomy explained 4 (order) to 13% (subgroup) of plot soil C variance, in addition to that explained by variables currently used in the model that determine initial soil C stocks. Soil taxonomy and leading species can compensate for one another to explain variance in soil C stocks. Our results suggest the potential of using the combination of leading tree species and soil taxonomy to improve soil C stocks initialized by forest C models, but this remains to be tested.

Format EndNote

Vous pouvez importer cette référence dans EndNote.

Format BibTeX-CSV

Vous pouvez importer cette référence en format BibTeX-CSV.

Format BibTeX

Vous pouvez copier l'entrée BibTeX de cette référence ci-bas, ou l'importer directement dans un logiciel tel que JabRef .

@ARTICLE { ShawBonaKurzEtAl2015,
    AUTHOR = { Shaw, C.H. and Bona, K.A. and Kurz, W.A. and Fyles, J.W. },
    TITLE = { The importance of tree species and soil taxonomy to modeling forest soil carbon stocks in Canada },
    JOURNAL = { Geoderma Regional },
    YEAR = { 2015 },
    VOLUME = { 4 },
    PAGES = { 114-125 },
    NOTE = { cited By 0 },
    ABSTRACT = { Accurate initialization of soil and dead organic matter carbon (C) stocks in forest ecosystem models is challenging but critical to forest C estimation, assessing current and future responses to climate change, and evaluation of management options for climate change mitigation strategies. We identified opportunities to improve the accuracy of soil C estimates from the Carbon Budget of the Canadian Forest Sector (CBM-CFS3) - a model of forest C dynamics used to support greenhouse gas emission reporting. Accuracy of soil C stocks estimated by models is very dependent on the initialization process. Here, we used redundancy analysis (RDA) and ordinations in an exploratory analysis to compare the variance structures of soil C estimates determined by model variables used in the initialization process, in two different soil C datasets; one derived from the model, the other obtained from 2391 ground plots. We also used the ground plot data to determine if soil taxonomy (information currently not used in the CBM-CFS3) could be used to explain variation in addition to that already accounted for by variables in the model. Total variance of the plot C dataset was about twice as large as the variance of the model C dataset confirming that currently the model does not represent all factors that control variation in soil C stocks. Soil C stocks in the mineral soil were highly correlated with C stocks in soil organic horizons in the model dataset but not in the plot dataset, suggesting that the variables included in our assessment controlling C stocks in the mineral soil horizons are different than in the organic soil horizons. Tree productivity (maximum yield curve volume per hectare) explained a much larger proportion of the total variation in the model dataset than in the plot dataset, whereas the leading tree species explained more variation in the plot dataset than in the model, suggesting that accuracy of initialization of soil C stocks could be improved by including leading tree species to stratify soil C modeling parameters. Leading species that are in greatest need of improved representation were identified by ordination. The results from the RDA showed that soil taxonomy explained 4 (order) to 13% (subgroup) of plot soil C variance, in addition to that explained by variables currently used in the model that determine initial soil C stocks. Soil taxonomy and leading species can compensate for one another to explain variance in soil C stocks. Our results suggest the potential of using the combination of leading tree species and soil taxonomy to improve soil C stocks initialized by forest C models, but this remains to be tested. },
    AUTHOR_KEYWORDS = { Albeluvisols; Alfisols; Cambisols; Cryosols; Entisols; Fluvisols; Forest soil carbon; Gelisols; Gleysols; Inceptisols; Initialization; Luvisols; Model; Mollisols; Planosols; Podzols; Redundancy analysis; Regosols; Soil taxonomy; Solonetz; Spodosols; Tree species },
    DOCUMENT_TYPE = { Article },
    DOI = { 10.1016/j.geodrs.2015.01.001 },
    SOURCE = { Scopus },
    URL = { http://www.scopus.com/inward/record.url?eid=2-s2.0-84923106485&partnerID=40&md5=27812f101b811a3810ea0b6744b45541 },
}

********************************************************** ***************** Facebook Twitter *********************** **********************************************************

Abonnez-vous à
l'Infolettre du CEF!

********************************************************** ************* Colloque **************************** **********************************************************

1er au 3 mai 2019
UQAC

********************************************************** ************* R à Québec 2019**************************** **********************************************************

********************************************************** ********************* Traits **************************** **********************************************************

********************************************************** ************* Écoles d'été et formation **************************** **********************************************************

Écoles d'été et formations

Cours intensif sur l'analyse des pistes 
6-10 mai 2019, Université de Sherbrooke
Cours intensif : Taxonomie et méthodes d’échantillonnage en tourbières 
6-17 mai 2019, Université Laval
Dendrochronological Fieldweek 2019 
16-21 mai 2019, Station FERLD
Traits Fonctionnels des Organismes - École thématique internationale
19-24 mai 2019, Porquerolles, France
Cours aux cycles supérieurs: Terrain avancé en géographie 
10-15 juin 2019, FERLD, Abitibi-Témiscamingue
École d'été « Drones et télédétection environnementale » 
13-14 juin 2019, Sherbrooke
Ecole d'été en Biologie et Ecologie intégratives 
6-12 juillet 2019, Pyrénées françaises
École d'été en modélisation de la biodiversité 
19-23 août 2019, Orford
Cours aux cycles supérieurs: Aménagement des écosystèmes forestiers 
19-30 août 2019, Station FERLD

********************************************************** ***************** Pub - Carapace ****************** **********************************************************

********************************************************** ***************** Pub - Budworm ****************** **********************************************************

********************************************************** ***************** Pub - Colibri **************************** **********************************************************

********************************************************** ********** Pub 6 - Au coeur de l'arbre *********** **********************************************************

...Une exposition
virtuelle sur l'arbre!

********************************************************** ***************** Boîte à trucs *************** **********************************************************

CEF-Référence
La référence vedette !

Jérémie Alluard (2016) Les statistiques au moments de la rédaction 

  • Ce document a pour but de guider les étudiants à intégrer de manière appropriée une analyse statistique dans leur rapport de recherche.

Voir les autres...